Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\(12^{x^2 + 5x - 4} = 12^{2x + 6}\)[/tex], we start by recognizing that the bases on both sides are the same. This allows us to set the exponents equal to each other:
[tex]\[ x^2 + 5x - 4 = 2x + 6 \][/tex]
Next, we rearrange the equation to form a standard quadratic equation by moving all terms to one side:
[tex]\[ x^2 + 5x - 4 - 2x - 6 = 0 \][/tex]
Simplify the equation:
[tex]\[ x^2 + 3x - 10 = 0 \][/tex]
Now that we have a quadratic equation, we can solve it using the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( x^2 + 3x - 10 = 0 \)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = -10\)[/tex]
First, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 3^2 - 4(1)(-10) = 9 + 40 = 49 \][/tex]
Since the discriminant is positive, we will have two real solutions. We now substitute the values into the quadratic formula:
[tex]\[ x = \frac{-3 \pm \sqrt{49}}{2(1)} = \frac{-3 \pm 7}{2} \][/tex]
This gives us two solutions:
1. [tex]\( x_1 = \frac{-3 + 7}{2} = \frac{4}{2} = 2 \)[/tex]
2. [tex]\( x_2 = \frac{-3 - 7}{2} = \frac{-10}{2} = -5 \)[/tex]
Therefore, the solutions to the equation are:
[tex]\[ x = 2 \quad \text{and} \quad x = -5 \][/tex]
So, the correct answers are [tex]\( x = 2 \)[/tex] and [tex]\( x = -5 \)[/tex].
[tex]\[ x^2 + 5x - 4 = 2x + 6 \][/tex]
Next, we rearrange the equation to form a standard quadratic equation by moving all terms to one side:
[tex]\[ x^2 + 5x - 4 - 2x - 6 = 0 \][/tex]
Simplify the equation:
[tex]\[ x^2 + 3x - 10 = 0 \][/tex]
Now that we have a quadratic equation, we can solve it using the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( x^2 + 3x - 10 = 0 \)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = -10\)[/tex]
First, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 3^2 - 4(1)(-10) = 9 + 40 = 49 \][/tex]
Since the discriminant is positive, we will have two real solutions. We now substitute the values into the quadratic formula:
[tex]\[ x = \frac{-3 \pm \sqrt{49}}{2(1)} = \frac{-3 \pm 7}{2} \][/tex]
This gives us two solutions:
1. [tex]\( x_1 = \frac{-3 + 7}{2} = \frac{4}{2} = 2 \)[/tex]
2. [tex]\( x_2 = \frac{-3 - 7}{2} = \frac{-10}{2} = -5 \)[/tex]
Therefore, the solutions to the equation are:
[tex]\[ x = 2 \quad \text{and} \quad x = -5 \][/tex]
So, the correct answers are [tex]\( x = 2 \)[/tex] and [tex]\( x = -5 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.