Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

3. [tex]\(\frac{x}{6} + 5 = \frac{2}{3} + x\)[/tex]

4. [tex]\(\frac{2}{3x} + \frac{1}{2} = \frac{3}{2x} + \frac{13}{6}\)[/tex]

5. [tex]\(\frac{6 - 8x}{10} = \frac{8 - 6x}{8} - \frac{10 - 4x}{4}\)[/tex]

Sagot :

Sure, let's solve these equations one by one.

Equation 3:
[tex]$\frac{x}{6} + 5 = \frac{2}{3} + x$[/tex]

To solve this equation, follow these steps:

1. Get rid of the fractions by multiplying every term by the common denominator, which is 6 in this case:
[tex]$x + 30 = 4 + 6x$[/tex]

2. Rearrange the equation to gather all terms involving [tex]\(x\)[/tex] on one side:
[tex]$x - 6x = 4 - 30$[/tex]
[tex]$-5x = -26$[/tex]

3. Divide both sides by -5 to isolate [tex]\(x\)[/tex]:
[tex]$x = \frac{-26}{-5}$[/tex]
[tex]$x = 5.2$[/tex]

So, the solution for Equation 3 is:
[tex]$x = 5.2$[/tex]

Equation 4:
[tex]$\frac{2}{3x} + \frac{1}{2} = \frac{3}{2x} + \frac{13}{6}$[/tex]

To solve this equation, follow these steps:

1. Get rid of the fractions by multiplying every term by the common denominator, which is [tex]\(6x\)[/tex] in this case:
[tex]$6x \left( \frac{2}{3x} + \frac{1}{2} \right) = 6x \left( \frac{3}{2x} + \frac{13}{6} \right)$[/tex]

2. Simplify the equation:
[tex]$4 + 3x = 9 + 13x$[/tex]

3. Rearrange the equation to gather all terms involving [tex]\(x\)[/tex] on one side:
[tex]$4 + 3x - 9 = 13x$[/tex]
[tex]$-5 = 10x$[/tex]

4. Divide both sides by 10 to isolate [tex]\(x\)[/tex]:
[tex]$x = \frac{-5}{10}$[/tex]
[tex]$x = -0.5$[/tex]

So, the solution for Equation 4 is:
[tex]$x = -0.5$[/tex]

Equation 5:
[tex]$\frac{6 - 8x}{10} = \frac{8 - 6x}{8} - \frac{10 - 4x}{4}$[/tex]

To solve this equation, follow these steps:

1. Combine the fractions on the right-hand side to a single fraction:
[tex]$\frac{6 - 8x}{10} = \frac{8 - 6x}{8} - \frac{10 - 4x}{4}$[/tex]

2. Find the common denominator for the fractions on the right-hand side, which is 8:
[tex]$\frac{8 - 6x}{8} - \frac{20 - 8x}{8}$[/tex]
[tex]$\frac{8 - 6x - (20 - 8x)}{8}$[/tex]
[tex]$\frac{8 - 6x - 20 + 8x}{8}$[/tex]
[tex]$\frac{-12 + 2x}{8}$[/tex]
[tex]$\frac{2x - 12}{8}$[/tex]

3. Now set the left-hand side equal to the right-hand side:
[tex]$\frac{6 - 8x}{10} = \frac{2x - 12}{8}$[/tex]

4. Cross-multiply to get rid of the fractions:
[tex]$(6 - 8x) \cdot 8 = (2x - 12) \cdot 10$[/tex]

5. Simplify the equation:
[tex]$48 - 64x = 20x - 120$[/tex]

6. Rearrange the equation to gather all terms involving [tex]\(x\)[/tex] on one side:
[tex]$48 + 120 = 20x + 64x$[/tex]
[tex]$168 = 84x$[/tex]

7. Divide both sides by 84 to isolate [tex]\(x\)[/tex]:
[tex]$x = \frac{168}{84}$[/tex]
[tex]$x = 2$[/tex]

So, the solution for Equation 5 is:
[tex]$x = 2$[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.