Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's solve the given linear programming problem step by step.
### Step 1: Problem Formulation
We are given the problem:
[tex]\[ \begin{array}{ll} \text{Maximize:} & z = 5x + 4y \\ \text{subject to:} & 2x + 4y \leq 8 \\ & 5x + y \leq 8 \\ & x \geq 0 \\ & y \geq 0 \end{array} \][/tex]
### Step 2: Convert Inequalities into Equations (Boundary Lines)
First, let's convert the inequalities into equations to find the boundary lines:
- [tex]\( 2x + 4y = 8 \)[/tex]
- [tex]\( 5x + y = 8 \)[/tex]
### Step 3: Find the Intersection Points of the Constraints
We'll find the intersection points by solving the equations:
1. Intersection of [tex]\( 2x + 4y = 8 \)[/tex] and [tex]\( 5x + y = 8 \)[/tex]:
- Multiply the second equation by 4 to align coefficients of [tex]\( y \)[/tex]:
[tex]\[ 4 \times (5x + y) = 4 \times 8 \implies 20x + 4y = 32 \][/tex]
- Subtract the first equation [tex]\( 2x + 4y = 8 \)[/tex] from the modified second equation:
[tex]\[ (20x + 4y) - (2x + 4y) = 32 - 8 \implies 18x = 24 \implies x = \frac{24}{18} = \frac{4}{3} \approx 1.333 \][/tex]
- Substitute [tex]\( x = \frac{4}{3} \)[/tex] back into [tex]\( 5x + y = 8 \)[/tex]:
[tex]\[ 5 \left(\frac{4}{3}\right) + y = 8 \implies \frac{20}{3} + y = 8 \implies y = 8 - \frac{20}{3} = \frac{24}{3} - \frac{20}{3} = \frac{4}{3} \approx 1.333 \][/tex]
So, the intersection point is [tex]\( \left(\frac{4}{3}, \frac{4}{3}\right) \)[/tex] or approximately [tex]\( (1.333, 1.333) \)[/tex].
### Step 4: Evaluate Objective Function at the Vertices of the Feasible Region
The feasible region is defined by the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], and the boundary lines [tex]\( 2x + 4y \leq 8 \)[/tex] and [tex]\( 5x + y \leq 8 \)[/tex]. Let's evaluate the objective function [tex]\( z = 5x + 4y \)[/tex] at the vertices of the feasible region:
1. Vertex [tex]\( (0,0) \)[/tex]:
[tex]\[ z = 5(0) + 4(0) = 0 \][/tex]
2. Vertex [tex]\( (0,2) \)[/tex] (intersection of [tex]\( 2x + 4y = 8 \)[/tex] with [tex]\( x = 0 \)[/tex]):
[tex]\[ 2(0) + 4y = 8 \implies y = 2 \][/tex]
[tex]\[ z = 5(0) + 4(2) = 8 \][/tex]
3. Vertex [tex]\( (1.6, 0) \)[/tex] (intersection of [tex]\( 5x + y = 8 \)[/tex] with [tex]\( y = 0 \)[/tex]):
[tex]\[ 5x + 0 = 8 \implies x = 1.6 \][/tex]
[tex]\[ z = 5(1.6) + 4(0) = 8 \][/tex]
4. Vertex [tex]\( (1.333, 1.333) \)[/tex] (intersection found in Step 3):
[tex]\[ z = 5(1.333) + 4(1.333) = 6.665 + 5.332 \approx 12 \][/tex]
### Step 5: Determine the Maximum Value
Comparing these values:
- At [tex]\( (0,0) \)[/tex], [tex]\( z = 0 \)[/tex]
- At [tex]\( (0,2) \)[/tex], [tex]\( z = 8 \)[/tex]
- At [tex]\( (1.6, 0) \)[/tex], [tex]\( z = 8 \)[/tex]
- At [tex]\( (1.333, 1.333) \)[/tex], [tex]\( z = 12 \)[/tex]
The maximum value of [tex]\( z = 12 \)[/tex] occurs at [tex]\( (1.333, 1.333) \)[/tex].
Therefore, the maximum value is [tex]\(\boxed{12}\)[/tex].
### Step 1: Problem Formulation
We are given the problem:
[tex]\[ \begin{array}{ll} \text{Maximize:} & z = 5x + 4y \\ \text{subject to:} & 2x + 4y \leq 8 \\ & 5x + y \leq 8 \\ & x \geq 0 \\ & y \geq 0 \end{array} \][/tex]
### Step 2: Convert Inequalities into Equations (Boundary Lines)
First, let's convert the inequalities into equations to find the boundary lines:
- [tex]\( 2x + 4y = 8 \)[/tex]
- [tex]\( 5x + y = 8 \)[/tex]
### Step 3: Find the Intersection Points of the Constraints
We'll find the intersection points by solving the equations:
1. Intersection of [tex]\( 2x + 4y = 8 \)[/tex] and [tex]\( 5x + y = 8 \)[/tex]:
- Multiply the second equation by 4 to align coefficients of [tex]\( y \)[/tex]:
[tex]\[ 4 \times (5x + y) = 4 \times 8 \implies 20x + 4y = 32 \][/tex]
- Subtract the first equation [tex]\( 2x + 4y = 8 \)[/tex] from the modified second equation:
[tex]\[ (20x + 4y) - (2x + 4y) = 32 - 8 \implies 18x = 24 \implies x = \frac{24}{18} = \frac{4}{3} \approx 1.333 \][/tex]
- Substitute [tex]\( x = \frac{4}{3} \)[/tex] back into [tex]\( 5x + y = 8 \)[/tex]:
[tex]\[ 5 \left(\frac{4}{3}\right) + y = 8 \implies \frac{20}{3} + y = 8 \implies y = 8 - \frac{20}{3} = \frac{24}{3} - \frac{20}{3} = \frac{4}{3} \approx 1.333 \][/tex]
So, the intersection point is [tex]\( \left(\frac{4}{3}, \frac{4}{3}\right) \)[/tex] or approximately [tex]\( (1.333, 1.333) \)[/tex].
### Step 4: Evaluate Objective Function at the Vertices of the Feasible Region
The feasible region is defined by the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], and the boundary lines [tex]\( 2x + 4y \leq 8 \)[/tex] and [tex]\( 5x + y \leq 8 \)[/tex]. Let's evaluate the objective function [tex]\( z = 5x + 4y \)[/tex] at the vertices of the feasible region:
1. Vertex [tex]\( (0,0) \)[/tex]:
[tex]\[ z = 5(0) + 4(0) = 0 \][/tex]
2. Vertex [tex]\( (0,2) \)[/tex] (intersection of [tex]\( 2x + 4y = 8 \)[/tex] with [tex]\( x = 0 \)[/tex]):
[tex]\[ 2(0) + 4y = 8 \implies y = 2 \][/tex]
[tex]\[ z = 5(0) + 4(2) = 8 \][/tex]
3. Vertex [tex]\( (1.6, 0) \)[/tex] (intersection of [tex]\( 5x + y = 8 \)[/tex] with [tex]\( y = 0 \)[/tex]):
[tex]\[ 5x + 0 = 8 \implies x = 1.6 \][/tex]
[tex]\[ z = 5(1.6) + 4(0) = 8 \][/tex]
4. Vertex [tex]\( (1.333, 1.333) \)[/tex] (intersection found in Step 3):
[tex]\[ z = 5(1.333) + 4(1.333) = 6.665 + 5.332 \approx 12 \][/tex]
### Step 5: Determine the Maximum Value
Comparing these values:
- At [tex]\( (0,0) \)[/tex], [tex]\( z = 0 \)[/tex]
- At [tex]\( (0,2) \)[/tex], [tex]\( z = 8 \)[/tex]
- At [tex]\( (1.6, 0) \)[/tex], [tex]\( z = 8 \)[/tex]
- At [tex]\( (1.333, 1.333) \)[/tex], [tex]\( z = 12 \)[/tex]
The maximum value of [tex]\( z = 12 \)[/tex] occurs at [tex]\( (1.333, 1.333) \)[/tex].
Therefore, the maximum value is [tex]\(\boxed{12}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.