Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's solve the given linear programming problem step by step.
### Step 1: Problem Formulation
We are given the problem:
[tex]\[ \begin{array}{ll} \text{Maximize:} & z = 5x + 4y \\ \text{subject to:} & 2x + 4y \leq 8 \\ & 5x + y \leq 8 \\ & x \geq 0 \\ & y \geq 0 \end{array} \][/tex]
### Step 2: Convert Inequalities into Equations (Boundary Lines)
First, let's convert the inequalities into equations to find the boundary lines:
- [tex]\( 2x + 4y = 8 \)[/tex]
- [tex]\( 5x + y = 8 \)[/tex]
### Step 3: Find the Intersection Points of the Constraints
We'll find the intersection points by solving the equations:
1. Intersection of [tex]\( 2x + 4y = 8 \)[/tex] and [tex]\( 5x + y = 8 \)[/tex]:
- Multiply the second equation by 4 to align coefficients of [tex]\( y \)[/tex]:
[tex]\[ 4 \times (5x + y) = 4 \times 8 \implies 20x + 4y = 32 \][/tex]
- Subtract the first equation [tex]\( 2x + 4y = 8 \)[/tex] from the modified second equation:
[tex]\[ (20x + 4y) - (2x + 4y) = 32 - 8 \implies 18x = 24 \implies x = \frac{24}{18} = \frac{4}{3} \approx 1.333 \][/tex]
- Substitute [tex]\( x = \frac{4}{3} \)[/tex] back into [tex]\( 5x + y = 8 \)[/tex]:
[tex]\[ 5 \left(\frac{4}{3}\right) + y = 8 \implies \frac{20}{3} + y = 8 \implies y = 8 - \frac{20}{3} = \frac{24}{3} - \frac{20}{3} = \frac{4}{3} \approx 1.333 \][/tex]
So, the intersection point is [tex]\( \left(\frac{4}{3}, \frac{4}{3}\right) \)[/tex] or approximately [tex]\( (1.333, 1.333) \)[/tex].
### Step 4: Evaluate Objective Function at the Vertices of the Feasible Region
The feasible region is defined by the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], and the boundary lines [tex]\( 2x + 4y \leq 8 \)[/tex] and [tex]\( 5x + y \leq 8 \)[/tex]. Let's evaluate the objective function [tex]\( z = 5x + 4y \)[/tex] at the vertices of the feasible region:
1. Vertex [tex]\( (0,0) \)[/tex]:
[tex]\[ z = 5(0) + 4(0) = 0 \][/tex]
2. Vertex [tex]\( (0,2) \)[/tex] (intersection of [tex]\( 2x + 4y = 8 \)[/tex] with [tex]\( x = 0 \)[/tex]):
[tex]\[ 2(0) + 4y = 8 \implies y = 2 \][/tex]
[tex]\[ z = 5(0) + 4(2) = 8 \][/tex]
3. Vertex [tex]\( (1.6, 0) \)[/tex] (intersection of [tex]\( 5x + y = 8 \)[/tex] with [tex]\( y = 0 \)[/tex]):
[tex]\[ 5x + 0 = 8 \implies x = 1.6 \][/tex]
[tex]\[ z = 5(1.6) + 4(0) = 8 \][/tex]
4. Vertex [tex]\( (1.333, 1.333) \)[/tex] (intersection found in Step 3):
[tex]\[ z = 5(1.333) + 4(1.333) = 6.665 + 5.332 \approx 12 \][/tex]
### Step 5: Determine the Maximum Value
Comparing these values:
- At [tex]\( (0,0) \)[/tex], [tex]\( z = 0 \)[/tex]
- At [tex]\( (0,2) \)[/tex], [tex]\( z = 8 \)[/tex]
- At [tex]\( (1.6, 0) \)[/tex], [tex]\( z = 8 \)[/tex]
- At [tex]\( (1.333, 1.333) \)[/tex], [tex]\( z = 12 \)[/tex]
The maximum value of [tex]\( z = 12 \)[/tex] occurs at [tex]\( (1.333, 1.333) \)[/tex].
Therefore, the maximum value is [tex]\(\boxed{12}\)[/tex].
### Step 1: Problem Formulation
We are given the problem:
[tex]\[ \begin{array}{ll} \text{Maximize:} & z = 5x + 4y \\ \text{subject to:} & 2x + 4y \leq 8 \\ & 5x + y \leq 8 \\ & x \geq 0 \\ & y \geq 0 \end{array} \][/tex]
### Step 2: Convert Inequalities into Equations (Boundary Lines)
First, let's convert the inequalities into equations to find the boundary lines:
- [tex]\( 2x + 4y = 8 \)[/tex]
- [tex]\( 5x + y = 8 \)[/tex]
### Step 3: Find the Intersection Points of the Constraints
We'll find the intersection points by solving the equations:
1. Intersection of [tex]\( 2x + 4y = 8 \)[/tex] and [tex]\( 5x + y = 8 \)[/tex]:
- Multiply the second equation by 4 to align coefficients of [tex]\( y \)[/tex]:
[tex]\[ 4 \times (5x + y) = 4 \times 8 \implies 20x + 4y = 32 \][/tex]
- Subtract the first equation [tex]\( 2x + 4y = 8 \)[/tex] from the modified second equation:
[tex]\[ (20x + 4y) - (2x + 4y) = 32 - 8 \implies 18x = 24 \implies x = \frac{24}{18} = \frac{4}{3} \approx 1.333 \][/tex]
- Substitute [tex]\( x = \frac{4}{3} \)[/tex] back into [tex]\( 5x + y = 8 \)[/tex]:
[tex]\[ 5 \left(\frac{4}{3}\right) + y = 8 \implies \frac{20}{3} + y = 8 \implies y = 8 - \frac{20}{3} = \frac{24}{3} - \frac{20}{3} = \frac{4}{3} \approx 1.333 \][/tex]
So, the intersection point is [tex]\( \left(\frac{4}{3}, \frac{4}{3}\right) \)[/tex] or approximately [tex]\( (1.333, 1.333) \)[/tex].
### Step 4: Evaluate Objective Function at the Vertices of the Feasible Region
The feasible region is defined by the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], and the boundary lines [tex]\( 2x + 4y \leq 8 \)[/tex] and [tex]\( 5x + y \leq 8 \)[/tex]. Let's evaluate the objective function [tex]\( z = 5x + 4y \)[/tex] at the vertices of the feasible region:
1. Vertex [tex]\( (0,0) \)[/tex]:
[tex]\[ z = 5(0) + 4(0) = 0 \][/tex]
2. Vertex [tex]\( (0,2) \)[/tex] (intersection of [tex]\( 2x + 4y = 8 \)[/tex] with [tex]\( x = 0 \)[/tex]):
[tex]\[ 2(0) + 4y = 8 \implies y = 2 \][/tex]
[tex]\[ z = 5(0) + 4(2) = 8 \][/tex]
3. Vertex [tex]\( (1.6, 0) \)[/tex] (intersection of [tex]\( 5x + y = 8 \)[/tex] with [tex]\( y = 0 \)[/tex]):
[tex]\[ 5x + 0 = 8 \implies x = 1.6 \][/tex]
[tex]\[ z = 5(1.6) + 4(0) = 8 \][/tex]
4. Vertex [tex]\( (1.333, 1.333) \)[/tex] (intersection found in Step 3):
[tex]\[ z = 5(1.333) + 4(1.333) = 6.665 + 5.332 \approx 12 \][/tex]
### Step 5: Determine the Maximum Value
Comparing these values:
- At [tex]\( (0,0) \)[/tex], [tex]\( z = 0 \)[/tex]
- At [tex]\( (0,2) \)[/tex], [tex]\( z = 8 \)[/tex]
- At [tex]\( (1.6, 0) \)[/tex], [tex]\( z = 8 \)[/tex]
- At [tex]\( (1.333, 1.333) \)[/tex], [tex]\( z = 12 \)[/tex]
The maximum value of [tex]\( z = 12 \)[/tex] occurs at [tex]\( (1.333, 1.333) \)[/tex].
Therefore, the maximum value is [tex]\(\boxed{12}\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.