Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze the quadratic expression [tex]\(7 \sqrt{2} x^2 - 10x - 4 \sqrt{2}\)[/tex]. To understand the different components of this expression, let's break it down into its coefficients and constant term.
A quadratic expression of the form [tex]\(ax^2 + bx + c\)[/tex] has three key components:
1. Coefficient of [tex]\(x^2\)[/tex], denoted as [tex]\(a\)[/tex]
2. Coefficient of [tex]\(x\)[/tex], denoted as [tex]\(b\)[/tex]
3. Constant term, denoted as [tex]\(c\)[/tex]
For the given expression [tex]\(7 \sqrt{2} x^2 - 10 x - 4 \sqrt{2}\)[/tex]:
1. The coefficient of [tex]\(x^2\)[/tex] is [tex]\(7 \sqrt{2}\)[/tex].
2. The coefficient of [tex]\(x\)[/tex] is [tex]\(-10\)[/tex].
3. The constant term is [tex]\(-4 \sqrt{2}\)[/tex].
Now, let's determine the numerical values of these components:
1. The coefficient [tex]\(a = 7 \sqrt{2}\)[/tex] approximately equals [tex]\(9.899494936611665\)[/tex].
2. The coefficient [tex]\(b = -10\)[/tex].
3. The constant term [tex]\(c = -4 \sqrt{2}\)[/tex] approximately equals [tex]\(-5.656854249492381\)[/tex].
These values are the accurate representations of the coefficients and the constant term in the quadratic expression when the square roots are evaluated:
Thus, we can identify:
- [tex]\(a = 9.899494936611665\)[/tex]
- [tex]\(b = -10\)[/tex]
- [tex]\(c = -5.656854249492381\)[/tex]
These values define the quadratic expression [tex]\(7 \sqrt{2} x^2 - 10 x - 4 \sqrt{2}\)[/tex].
A quadratic expression of the form [tex]\(ax^2 + bx + c\)[/tex] has three key components:
1. Coefficient of [tex]\(x^2\)[/tex], denoted as [tex]\(a\)[/tex]
2. Coefficient of [tex]\(x\)[/tex], denoted as [tex]\(b\)[/tex]
3. Constant term, denoted as [tex]\(c\)[/tex]
For the given expression [tex]\(7 \sqrt{2} x^2 - 10 x - 4 \sqrt{2}\)[/tex]:
1. The coefficient of [tex]\(x^2\)[/tex] is [tex]\(7 \sqrt{2}\)[/tex].
2. The coefficient of [tex]\(x\)[/tex] is [tex]\(-10\)[/tex].
3. The constant term is [tex]\(-4 \sqrt{2}\)[/tex].
Now, let's determine the numerical values of these components:
1. The coefficient [tex]\(a = 7 \sqrt{2}\)[/tex] approximately equals [tex]\(9.899494936611665\)[/tex].
2. The coefficient [tex]\(b = -10\)[/tex].
3. The constant term [tex]\(c = -4 \sqrt{2}\)[/tex] approximately equals [tex]\(-5.656854249492381\)[/tex].
These values are the accurate representations of the coefficients and the constant term in the quadratic expression when the square roots are evaluated:
Thus, we can identify:
- [tex]\(a = 9.899494936611665\)[/tex]
- [tex]\(b = -10\)[/tex]
- [tex]\(c = -5.656854249492381\)[/tex]
These values define the quadratic expression [tex]\(7 \sqrt{2} x^2 - 10 x - 4 \sqrt{2}\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.