Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the equation [tex]\(3^{2x} = 9^{3x - 4}\)[/tex] step-by-step.
First, we know that [tex]\(9\)[/tex] can be written as a power of [tex]\(3\)[/tex]:
[tex]\[ 9 = 3^2 \][/tex]
Substituting [tex]\(3^2\)[/tex] for [tex]\(9\)[/tex] in the original equation, we get:
[tex]\[ 3^{2x} = (3^2)^{3x - 4} \][/tex]
Next, we use the power of a power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ 3^{2x} = 3^{2 \cdot (3x - 4)} \][/tex]
Simplify the exponent on the right-hand side:
[tex]\[ 3^{2x} = 3^{6x - 8} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 2x = 6x - 8 \][/tex]
To solve for [tex]\(x\)[/tex], we need to isolate [tex]\(x\)[/tex] on one side of the equation. First, subtract [tex]\(6x\)[/tex] from both sides:
[tex]\[ 2x - 6x = -8 \][/tex]
[tex]\[ -4x = -8 \][/tex]
Next, divide both sides by [tex]\(-4\)[/tex]:
[tex]\[ x = \frac{-8}{-4} \][/tex]
[tex]\[ x = 2 \][/tex]
Therefore, the value of [tex]\(x\)[/tex] that satisfies the equation [tex]\(3^{2x} = 9^{3x - 4}\)[/tex] is [tex]\(x = 2\)[/tex].
So, the answer is:
[tex]\[ \boxed{2} \][/tex]
First, we know that [tex]\(9\)[/tex] can be written as a power of [tex]\(3\)[/tex]:
[tex]\[ 9 = 3^2 \][/tex]
Substituting [tex]\(3^2\)[/tex] for [tex]\(9\)[/tex] in the original equation, we get:
[tex]\[ 3^{2x} = (3^2)^{3x - 4} \][/tex]
Next, we use the power of a power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ 3^{2x} = 3^{2 \cdot (3x - 4)} \][/tex]
Simplify the exponent on the right-hand side:
[tex]\[ 3^{2x} = 3^{6x - 8} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 2x = 6x - 8 \][/tex]
To solve for [tex]\(x\)[/tex], we need to isolate [tex]\(x\)[/tex] on one side of the equation. First, subtract [tex]\(6x\)[/tex] from both sides:
[tex]\[ 2x - 6x = -8 \][/tex]
[tex]\[ -4x = -8 \][/tex]
Next, divide both sides by [tex]\(-4\)[/tex]:
[tex]\[ x = \frac{-8}{-4} \][/tex]
[tex]\[ x = 2 \][/tex]
Therefore, the value of [tex]\(x\)[/tex] that satisfies the equation [tex]\(3^{2x} = 9^{3x - 4}\)[/tex] is [tex]\(x = 2\)[/tex].
So, the answer is:
[tex]\[ \boxed{2} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.