Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve for the slope of the function given the points in the table, we must use the formula for the slope of a line between two points, which is given by:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Where [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] are two points on the line. Let's choose the points furthest apart from the table to ensure we capture the overall rate of change accurately:
Using the points [tex]\((2, 8.50)\)[/tex] and [tex]\((12, 31.00)\)[/tex]:
1. Calculate the change in miles ([tex]\(\Delta x\)[/tex]):
[tex]\[ \Delta x = x_2 - x_1 = 12 - 2 = 10 \][/tex]
2. Calculate the change in cost ([tex]\(\Delta y\)[/tex]):
[tex]\[ \Delta y = y_2 - y_1 = 31.00 - 8.50 = 22.50 \][/tex]
3. Now, substitute [tex]\(\Delta x\)[/tex] and [tex]\(\Delta y\)[/tex] into the slope formula:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} = \frac{22.50}{10} = 2.25 \][/tex]
So, the slope of the function is:
[tex]\[ 2.25 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{2.25} \][/tex]
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Where [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] are two points on the line. Let's choose the points furthest apart from the table to ensure we capture the overall rate of change accurately:
Using the points [tex]\((2, 8.50)\)[/tex] and [tex]\((12, 31.00)\)[/tex]:
1. Calculate the change in miles ([tex]\(\Delta x\)[/tex]):
[tex]\[ \Delta x = x_2 - x_1 = 12 - 2 = 10 \][/tex]
2. Calculate the change in cost ([tex]\(\Delta y\)[/tex]):
[tex]\[ \Delta y = y_2 - y_1 = 31.00 - 8.50 = 22.50 \][/tex]
3. Now, substitute [tex]\(\Delta x\)[/tex] and [tex]\(\Delta y\)[/tex] into the slope formula:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} = \frac{22.50}{10} = 2.25 \][/tex]
So, the slope of the function is:
[tex]\[ 2.25 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{2.25} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.