Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

What is the third term in the geometric sequence [tex]\( f(n)=2(0.8)^{n-1} \)[/tex]?

A. 4.8
B. 2.56
C. 1.28
D. 1.024


Sagot :

To find the third term in the geometric sequence [tex]\( f(n) = 2 \cdot (0.8)^{n-1} \)[/tex], follow these steps:

1. Identify the general form of the geometric sequence:
[tex]\[ f(n) = a \cdot r^{n-1} \][/tex]
where [tex]\( a \)[/tex] is the first term, [tex]\( r \)[/tex] is the common ratio, and [tex]\( n \)[/tex] is the term number.

2. Given the sequence, [tex]\( a = 2 \)[/tex] and [tex]\( r = 0.8 \)[/tex].

3. We are asked to find the third term ([tex]\( n = 3 \)[/tex]). Substitute [tex]\( n = 3 \)[/tex] into the general form of the sequence:
[tex]\[ f(3) = 2 \cdot (0.8)^{3-1} \][/tex]

4. Simplify the exponent [tex]\( 3-1 \)[/tex]:
[tex]\[ f(3) = 2 \cdot (0.8)^2 \][/tex]

5. Calculate [tex]\( (0.8)^2 \)[/tex]:
[tex]\[ (0.8)^2 = 0.64 \][/tex]

6. Multiply [tex]\( 2 \)[/tex] by [tex]\( 0.64 \)[/tex]:
[tex]\[ f(3) = 2 \cdot 0.64 = 1.28 \][/tex]

The third term in the geometric sequence [tex]\( f(n) = 2 \cdot (0.8)^{n-1} \)[/tex] is [tex]\( 1.28 \)[/tex].

Therefore, the answer is [tex]\(\boxed{1.28}\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.