At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve the given system of equations using the Gauss-Jordan elimination method:
[tex]\[ \begin{cases} 8x - 3y = 7 \\ 16x - 6y = 1 \end{cases} \][/tex]
First, we write the augmented matrix for the system:
[tex]\[ \left[\begin{array}{ccc} 8 & -3 & | & 7 \\ 16 & -6 & | & 1 \end{array}\right] \][/tex]
### Step 1: Normalize the first row
We divide the first row by 8 to make the leading coefficient 1.
[tex]\[ \left[\begin{array}{ccc} 1 & -\frac{3}{8} & | & \frac{7}{8} \\ 16 & -6 & | & 1 \end{array}\right] \][/tex]
### Step 2: Eliminate the first column of the second row
Next, we subtract 16 times the first row from the second row to eliminate the x-term in the second equation.
[tex]\[ R_{2} = R_{2} - 16R_{1} \][/tex]
[tex]\[ \left[\begin{array}{ccc} 1 & -\frac{3}{8} & | & \frac{7}{8} \\ 0 & 0 & | & -\frac{25}{8} \end{array}\right] \][/tex]
### Analysis of the resulting matrix
The second row translates into the equation:
[tex]\[ 0 = -\frac{25}{8} \][/tex]
This is a contradiction because [tex]\( 0 \)[/tex] cannot be equal to [tex]\( -\frac{25}{8} \)[/tex].
### Conclusion
Since we have arrived at a contradiction, this system of equations has no solutions.
The correct choice is:
C. There is no solution.
[tex]\[ \begin{cases} 8x - 3y = 7 \\ 16x - 6y = 1 \end{cases} \][/tex]
First, we write the augmented matrix for the system:
[tex]\[ \left[\begin{array}{ccc} 8 & -3 & | & 7 \\ 16 & -6 & | & 1 \end{array}\right] \][/tex]
### Step 1: Normalize the first row
We divide the first row by 8 to make the leading coefficient 1.
[tex]\[ \left[\begin{array}{ccc} 1 & -\frac{3}{8} & | & \frac{7}{8} \\ 16 & -6 & | & 1 \end{array}\right] \][/tex]
### Step 2: Eliminate the first column of the second row
Next, we subtract 16 times the first row from the second row to eliminate the x-term in the second equation.
[tex]\[ R_{2} = R_{2} - 16R_{1} \][/tex]
[tex]\[ \left[\begin{array}{ccc} 1 & -\frac{3}{8} & | & \frac{7}{8} \\ 0 & 0 & | & -\frac{25}{8} \end{array}\right] \][/tex]
### Analysis of the resulting matrix
The second row translates into the equation:
[tex]\[ 0 = -\frac{25}{8} \][/tex]
This is a contradiction because [tex]\( 0 \)[/tex] cannot be equal to [tex]\( -\frac{25}{8} \)[/tex].
### Conclusion
Since we have arrived at a contradiction, this system of equations has no solutions.
The correct choice is:
C. There is no solution.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.