Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To understand the graph of the function [tex]\( y = 5 \log(x + 3) \)[/tex], let's break down the components and characteristics step by step:
1. Understanding the Logarithm Function:
- The logarithmic function [tex]\( \log(x) \)[/tex] is only defined for [tex]\( x > 0 \)[/tex]. It has a vertical asymptote at [tex]\( x = 0 \)[/tex] and increases slowly without bound as [tex]\( x \)[/tex] increases.
- The natural logarithm [tex]\( \log(x) \)[/tex] refers to the logarithm with base [tex]\( e \)[/tex], where [tex]\( e \)[/tex] is approximately 2.718.
2. Transformation [tex]\( x + 3 \)[/tex]:
- Shifting the input of the log function by 3 units to the left, i.e., [tex]\( \log(x+3) \)[/tex], means the function inside the logarithm becomes positive when [tex]\( x > -3 \)[/tex].
- Therefore, the domain of the function [tex]\( y = 5 \log(x + 3) \)[/tex] is [tex]\( x > -3 \)[/tex].
3. Vertical Stretch by a Factor of 5:
- Multiplying the logarithmic function by 5 vertically stretches the graph by a factor of 5. This means every [tex]\( y \)[/tex]-value is expanded 5 times further away from the [tex]\( x \)[/tex]-axis.
4. Plotting Key Points:
- Let's determine a few values for better understanding:
- At [tex]\( x = -2 \)[/tex]:
[tex]\( y = 5 \log(-2 + 3) = 5 \log(1) = 5 \cdot 0 = 0 \)[/tex].
- At [tex]\( x = 0 \)[/tex]:
[tex]\( y = 5 \log(0 + 3) = 5 \log(3) \)[/tex].
Since [tex]\( \log(3) \approx 1.1 \)[/tex], [tex]\( y \approx 5 \times 1.1 = 5.5 \)[/tex].
- At [tex]\( x = 1 \)[/tex]:
[tex]\( y = 5 \log(1 + 3) = 5 \log(4) \)[/tex].
Since [tex]\( \log(4) \approx 1.386 \)[/tex], [tex]\( y \approx 5 \times 1.386 = 6.93 \)[/tex].
5. Asymptotic Behavior:
- The function [tex]\( y = 5 \log(x + 3) \)[/tex] has a vertical asymptote at [tex]\( x = -3 \)[/tex]. As [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( y \)[/tex] decreases without bound.
Using these points and characteristics, we can sketch the graph:
- The graph will start very high (approaching [tex]\(-\infty\)[/tex]) on the left slightly to the right of [tex]\( x = -3 \)[/tex] and will cross the [tex]\( y \)[/tex]-axis at [tex]\( (0, 5 \log(3)) \)[/tex], which is [tex]\( (0, 5.5) \)[/tex].
- It will then increase without bound as [tex]\( x \)[/tex] increases further to the right.
To illustrate the graph:
1. Draw the vertical asymptote at [tex]\( x = -3 \)[/tex].
2. Mark the points: [tex]\( (-2,0) \)[/tex], [tex]\( (0, 5.5) \)[/tex], and a few others.
3. Sketch the curve starting from the vertical asymptote [tex]\( x = -3 \)[/tex], passing through these points, and increasing slowly to the right.
In conclusion, the graph of [tex]\( y = 5 \log(x + 3) \)[/tex] is a logarithmic curve that has been shifted 3 units to the left and stretched vertically by a factor of 5. It has a vertical asymptote at [tex]\( x = -3 \)[/tex], passes through point [tex]\( (-2, 0) \)[/tex], and increases slowly as [tex]\( x \)[/tex] moves to the right.
1. Understanding the Logarithm Function:
- The logarithmic function [tex]\( \log(x) \)[/tex] is only defined for [tex]\( x > 0 \)[/tex]. It has a vertical asymptote at [tex]\( x = 0 \)[/tex] and increases slowly without bound as [tex]\( x \)[/tex] increases.
- The natural logarithm [tex]\( \log(x) \)[/tex] refers to the logarithm with base [tex]\( e \)[/tex], where [tex]\( e \)[/tex] is approximately 2.718.
2. Transformation [tex]\( x + 3 \)[/tex]:
- Shifting the input of the log function by 3 units to the left, i.e., [tex]\( \log(x+3) \)[/tex], means the function inside the logarithm becomes positive when [tex]\( x > -3 \)[/tex].
- Therefore, the domain of the function [tex]\( y = 5 \log(x + 3) \)[/tex] is [tex]\( x > -3 \)[/tex].
3. Vertical Stretch by a Factor of 5:
- Multiplying the logarithmic function by 5 vertically stretches the graph by a factor of 5. This means every [tex]\( y \)[/tex]-value is expanded 5 times further away from the [tex]\( x \)[/tex]-axis.
4. Plotting Key Points:
- Let's determine a few values for better understanding:
- At [tex]\( x = -2 \)[/tex]:
[tex]\( y = 5 \log(-2 + 3) = 5 \log(1) = 5 \cdot 0 = 0 \)[/tex].
- At [tex]\( x = 0 \)[/tex]:
[tex]\( y = 5 \log(0 + 3) = 5 \log(3) \)[/tex].
Since [tex]\( \log(3) \approx 1.1 \)[/tex], [tex]\( y \approx 5 \times 1.1 = 5.5 \)[/tex].
- At [tex]\( x = 1 \)[/tex]:
[tex]\( y = 5 \log(1 + 3) = 5 \log(4) \)[/tex].
Since [tex]\( \log(4) \approx 1.386 \)[/tex], [tex]\( y \approx 5 \times 1.386 = 6.93 \)[/tex].
5. Asymptotic Behavior:
- The function [tex]\( y = 5 \log(x + 3) \)[/tex] has a vertical asymptote at [tex]\( x = -3 \)[/tex]. As [tex]\( x \)[/tex] approaches [tex]\( -3 \)[/tex] from the right, [tex]\( y \)[/tex] decreases without bound.
Using these points and characteristics, we can sketch the graph:
- The graph will start very high (approaching [tex]\(-\infty\)[/tex]) on the left slightly to the right of [tex]\( x = -3 \)[/tex] and will cross the [tex]\( y \)[/tex]-axis at [tex]\( (0, 5 \log(3)) \)[/tex], which is [tex]\( (0, 5.5) \)[/tex].
- It will then increase without bound as [tex]\( x \)[/tex] increases further to the right.
To illustrate the graph:
1. Draw the vertical asymptote at [tex]\( x = -3 \)[/tex].
2. Mark the points: [tex]\( (-2,0) \)[/tex], [tex]\( (0, 5.5) \)[/tex], and a few others.
3. Sketch the curve starting from the vertical asymptote [tex]\( x = -3 \)[/tex], passing through these points, and increasing slowly to the right.
In conclusion, the graph of [tex]\( y = 5 \log(x + 3) \)[/tex] is a logarithmic curve that has been shifted 3 units to the left and stretched vertically by a factor of 5. It has a vertical asymptote at [tex]\( x = -3 \)[/tex], passes through point [tex]\( (-2, 0) \)[/tex], and increases slowly as [tex]\( x \)[/tex] moves to the right.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.