Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The expression [tex]\(\frac{f(x+h)-f(x)}{h}\)[/tex] for [tex]\(h \neq 0\)[/tex] is called the difference quotient. Find and simplify the difference quotient for the following function:

[tex]\[ f(x) = -9x^2 + 6x + 6 \][/tex]

The difference quotient is [tex]\(\square\)[/tex].

(Simplify your answer.)


Sagot :

To solve for the difference quotient of the given function [tex]\( f(x) = -9x^2 + 6x + 6 \)[/tex] and subsequently simplify it, follow these steps:

1. Define the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = -9x^2 + 6x + 6 \][/tex]

2. Determine [tex]\( f(x + h) \)[/tex] by substituting [tex]\( x + h \)[/tex] into the function:
[tex]\[ f(x + h) = -9(x + h)^2 + 6(x + h) + 6 \][/tex]
[tex]\[ = -9(x^2 + 2xh + h^2) + 6x + 6h + 6 \][/tex]
[tex]\[ = -9x^2 - 18xh - 9h^2 + 6x + 6h + 6 \][/tex]

3. Compute the difference [tex]\( f(x + h) - f(x) \)[/tex]:
[tex]\[ f(x + h) - f(x) = (-9x^2 - 18xh - 9h^2 + 6x + 6h + 6) - (-9x^2 + 6x + 6) \][/tex]
[tex]\[ = -9x^2 - 18xh - 9h^2 + 6x + 6h + 6 + 9x^2 - 6x - 6 \][/tex]
[tex]\[ = -18xh - 9h^2 + 6h \][/tex]

4. Form the difference quotient by dividing by [tex]\( h \)[/tex]:
[tex]\[ \frac{f(x + h) - f(x)}{h} = \frac{-18xh - 9h^2 + 6h}{h} \][/tex]
[tex]\[ = \frac{-18xh}{h} + \frac{-9h^2}{h} + \frac{6h}{h} \][/tex]
[tex]\[ = -18x - 9h + 6 \][/tex]

5. Simplify the expression (since [tex]\( h \neq 0 \)[/tex]):
[tex]\[ \frac{f(x + h) - f(x)}{h} = -18x - 9h + 6 \][/tex]

Therefore, the simplified difference quotient for the function [tex]\( f(x) = -9x^2 + 6x + 6 \)[/tex] is:
[tex]\[ \boxed{-18x - 9h + 6} \][/tex]