Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the recursive rule for the given geometric sequence [tex]\( f(n) = 13 (1.3)^{n-1} \)[/tex], let's analyze each part of the sequence step-by-step.
1. Initial Term:
The initial term [tex]\( f(1) \)[/tex] is given by plugging in [tex]\( n = 1 \)[/tex] into the formula:
[tex]\[ f(1) = 13 \cdot (1.3)^{1-1} = 13 \cdot (1.3)^0 = 13 \cdot 1 = 13 \][/tex]
So, we have:
[tex]\[ f(1) = 13 \][/tex]
2. Recursive Relationship:
A geometric sequence has a common ratio between consecutive terms. For this sequence, the common ratio [tex]\( r \)[/tex] can be determined from the formula:
[tex]\[ f(n) = 13 \cdot (1.3)^{n-1} \][/tex]
To find the relationship between [tex]\( f(n) \)[/tex] and [tex]\( f(n-1) \)[/tex], consider:
[tex]\[ f(n-1) = 13 \cdot (1.3)^{(n-1)-1} = 13 \cdot (1.3)^{n-2} \][/tex]
To express [tex]\( f(n) \)[/tex] using [tex]\( f(n-1) \)[/tex]:
\begin{align}
f(n) &= 13 \cdot (1.3)^{n-1} \\
&= 13 \cdot (1.3)^{n-2} \cdot (1.3)^1 \\
&= (13 \cdot (1.3)^{n-2}) \cdot 1.3 \\
&= f(n-1) \cdot 1.3
\end{align}
Therefore, the recursive relationship is:
[tex]\[ f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Combining both the initial term and the recursive relationship, the recursive rule for the geometric sequence is:
[tex]\[ f(1) = 13, \quad f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Thus, the correct choice is:
\[
f(1)=13, \quad f(n)=1.3 \cdot f(n-1), \quad n\geq 2
\
1. Initial Term:
The initial term [tex]\( f(1) \)[/tex] is given by plugging in [tex]\( n = 1 \)[/tex] into the formula:
[tex]\[ f(1) = 13 \cdot (1.3)^{1-1} = 13 \cdot (1.3)^0 = 13 \cdot 1 = 13 \][/tex]
So, we have:
[tex]\[ f(1) = 13 \][/tex]
2. Recursive Relationship:
A geometric sequence has a common ratio between consecutive terms. For this sequence, the common ratio [tex]\( r \)[/tex] can be determined from the formula:
[tex]\[ f(n) = 13 \cdot (1.3)^{n-1} \][/tex]
To find the relationship between [tex]\( f(n) \)[/tex] and [tex]\( f(n-1) \)[/tex], consider:
[tex]\[ f(n-1) = 13 \cdot (1.3)^{(n-1)-1} = 13 \cdot (1.3)^{n-2} \][/tex]
To express [tex]\( f(n) \)[/tex] using [tex]\( f(n-1) \)[/tex]:
\begin{align}
f(n) &= 13 \cdot (1.3)^{n-1} \\
&= 13 \cdot (1.3)^{n-2} \cdot (1.3)^1 \\
&= (13 \cdot (1.3)^{n-2}) \cdot 1.3 \\
&= f(n-1) \cdot 1.3
\end{align}
Therefore, the recursive relationship is:
[tex]\[ f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Combining both the initial term and the recursive relationship, the recursive rule for the geometric sequence is:
[tex]\[ f(1) = 13, \quad f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Thus, the correct choice is:
\[
f(1)=13, \quad f(n)=1.3 \cdot f(n-1), \quad n\geq 2
\
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.