At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the recursive rule for the given geometric sequence [tex]\( f(n) = 13 (1.3)^{n-1} \)[/tex], let's analyze each part of the sequence step-by-step.
1. Initial Term:
The initial term [tex]\( f(1) \)[/tex] is given by plugging in [tex]\( n = 1 \)[/tex] into the formula:
[tex]\[ f(1) = 13 \cdot (1.3)^{1-1} = 13 \cdot (1.3)^0 = 13 \cdot 1 = 13 \][/tex]
So, we have:
[tex]\[ f(1) = 13 \][/tex]
2. Recursive Relationship:
A geometric sequence has a common ratio between consecutive terms. For this sequence, the common ratio [tex]\( r \)[/tex] can be determined from the formula:
[tex]\[ f(n) = 13 \cdot (1.3)^{n-1} \][/tex]
To find the relationship between [tex]\( f(n) \)[/tex] and [tex]\( f(n-1) \)[/tex], consider:
[tex]\[ f(n-1) = 13 \cdot (1.3)^{(n-1)-1} = 13 \cdot (1.3)^{n-2} \][/tex]
To express [tex]\( f(n) \)[/tex] using [tex]\( f(n-1) \)[/tex]:
\begin{align}
f(n) &= 13 \cdot (1.3)^{n-1} \\
&= 13 \cdot (1.3)^{n-2} \cdot (1.3)^1 \\
&= (13 \cdot (1.3)^{n-2}) \cdot 1.3 \\
&= f(n-1) \cdot 1.3
\end{align}
Therefore, the recursive relationship is:
[tex]\[ f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Combining both the initial term and the recursive relationship, the recursive rule for the geometric sequence is:
[tex]\[ f(1) = 13, \quad f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Thus, the correct choice is:
\[
f(1)=13, \quad f(n)=1.3 \cdot f(n-1), \quad n\geq 2
\
1. Initial Term:
The initial term [tex]\( f(1) \)[/tex] is given by plugging in [tex]\( n = 1 \)[/tex] into the formula:
[tex]\[ f(1) = 13 \cdot (1.3)^{1-1} = 13 \cdot (1.3)^0 = 13 \cdot 1 = 13 \][/tex]
So, we have:
[tex]\[ f(1) = 13 \][/tex]
2. Recursive Relationship:
A geometric sequence has a common ratio between consecutive terms. For this sequence, the common ratio [tex]\( r \)[/tex] can be determined from the formula:
[tex]\[ f(n) = 13 \cdot (1.3)^{n-1} \][/tex]
To find the relationship between [tex]\( f(n) \)[/tex] and [tex]\( f(n-1) \)[/tex], consider:
[tex]\[ f(n-1) = 13 \cdot (1.3)^{(n-1)-1} = 13 \cdot (1.3)^{n-2} \][/tex]
To express [tex]\( f(n) \)[/tex] using [tex]\( f(n-1) \)[/tex]:
\begin{align}
f(n) &= 13 \cdot (1.3)^{n-1} \\
&= 13 \cdot (1.3)^{n-2} \cdot (1.3)^1 \\
&= (13 \cdot (1.3)^{n-2}) \cdot 1.3 \\
&= f(n-1) \cdot 1.3
\end{align}
Therefore, the recursive relationship is:
[tex]\[ f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Combining both the initial term and the recursive relationship, the recursive rule for the geometric sequence is:
[tex]\[ f(1) = 13, \quad f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]
Thus, the correct choice is:
\[
f(1)=13, \quad f(n)=1.3 \cdot f(n-1), \quad n\geq 2
\
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.