Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Find the values of the variables in the equation.

[tex]\[
\left[\begin{array}{rr}
-1 & -6 \\
9 & 3
\end{array}\right]=\left[\begin{array}{rr}
-1 & x \\
y & z
\end{array}\right]
\][/tex]

[tex]\[
\begin{array}{l}
x = \square \\
y = \square \\
z = \square
\end{array}
\][/tex]


Sagot :

To solve the problem of finding the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] in the equation, we need to analyze the matrices given on both sides of the equation and equate their respective elements.

The given matrices are:
[tex]\[ \left[\begin{array}{rr} -1 & -6 \\ 9 & 3 \end{array}\right] = \left[\begin{array}{rr} -1 & x \\ y & z \end{array}\right] \][/tex]

The elements of the matrices in corresponding positions must be equal. Let's match them element by element:

1. First row, first column:
[tex]\[ -1 = -1 \][/tex]
This equation is trivially satisfied.

2. First row, second column:
[tex]\[ -6 = x \][/tex]
From this equation, we find:
[tex]\[ x = -6 \][/tex]

3. Second row, first column:
[tex]\[ 9 = y \][/tex]
From this equation, we find:
[tex]\[ y = 9 \][/tex]

4. Second row, second column:
[tex]\[ 3 = z \][/tex]
From this equation, we find:
[tex]\[ z = 3 \][/tex]

Thus, the values of the variables are:
[tex]\[ \begin{array}{l} x = -6 \\ y = 9 \\ z = 3 \end{array} \][/tex]

These results can be written as:
[tex]\[ \boxed{-6} \][/tex]
[tex]\[ \boxed{9} \][/tex]
[tex]\[ \boxed{3} \][/tex]