Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the number of sides of a regular polygon given its exterior angle measures [tex]$30^{\circ}$[/tex], we can use the properties of polygons.
1. Exterior Angles of a Polygon:
- The sum of the exterior angles of any polygon is always [tex]$360^{\circ}$[/tex].
2. Finding the Number of Sides:
- If each exterior angle of a regular polygon is [tex]$30^{\circ}$[/tex], we can use the formula for the sum of the exterior angles to find the number of sides.
- The formula for the number of sides [tex]\( n \)[/tex] of a regular polygon can be derived from:
[tex]\[ \text{Number of sides} = \frac{\text{Sum of exterior angles}}{\text{Measure of one exterior angle}} \][/tex]
3. Applying the Values:
- The sum of the exterior angles is [tex]$360^{\circ}$[/tex]. The measure of one exterior angle is given as [tex]$30^{\circ}$[/tex].
- Plug in these values into the formula:
[tex]\[ n = \frac{360^{\circ}}{30^{\circ}} \][/tex]
4. Calculation:
- Perform the division:
[tex]\[ n = 12 \][/tex]
Therefore, the number of sides of the regular polygon is 12.
The correct answer is:
A. 12
1. Exterior Angles of a Polygon:
- The sum of the exterior angles of any polygon is always [tex]$360^{\circ}$[/tex].
2. Finding the Number of Sides:
- If each exterior angle of a regular polygon is [tex]$30^{\circ}$[/tex], we can use the formula for the sum of the exterior angles to find the number of sides.
- The formula for the number of sides [tex]\( n \)[/tex] of a regular polygon can be derived from:
[tex]\[ \text{Number of sides} = \frac{\text{Sum of exterior angles}}{\text{Measure of one exterior angle}} \][/tex]
3. Applying the Values:
- The sum of the exterior angles is [tex]$360^{\circ}$[/tex]. The measure of one exterior angle is given as [tex]$30^{\circ}$[/tex].
- Plug in these values into the formula:
[tex]\[ n = \frac{360^{\circ}}{30^{\circ}} \][/tex]
4. Calculation:
- Perform the division:
[tex]\[ n = 12 \][/tex]
Therefore, the number of sides of the regular polygon is 12.
The correct answer is:
A. 12
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.