Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the inverse function of [tex]\( f(x) = \sqrt{3x + 6} \)[/tex], follow these steps:
1. Rewrite the function using [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt{3x + 6} \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
First, square both sides to get rid of the square root:
[tex]\[ y^2 = 3x + 6 \][/tex]
Next, isolate [tex]\( x \)[/tex] by first subtracting 6 from both sides:
[tex]\[ y^2 - 6 = 3x \][/tex]
Then, divide both sides by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y^2 - 6}{3} \][/tex]
3. Express the inverse function:
The inverse function [tex]\( f^{-1}(x) \)[/tex] is given by:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3} \][/tex]
Now, we need to determine the valid domain for the inverse. The function [tex]\( f(x) = \sqrt{3x + 6} \)[/tex] is defined for values of [tex]\( x \)[/tex] that make the expression under the square root non-negative. This translates to:
[tex]\[ 3x + 6 \ge 0 \][/tex]
[tex]\[ 3x \ge -6 \][/tex]
[tex]\[ x \ge -2 \][/tex]
However, since the original function [tex]\( f(x) \)[/tex] involves a square root and outputs non-negative numbers, the inverse function [tex]\( f^{-1}(x) \)[/tex] should be real and non-negative for [tex]\( x \geq 0 \)[/tex]:
Thus, the correct inverse and its domain are:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3}, \quad x \geq 0 \][/tex]
From the given choices, it matches:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3}, x \geq 0 \][/tex]
So, the correct option is:
1. [tex]\( f^{-1}(x) = \frac{x^2 - 6}{3}, x \geq 0 \)[/tex]
1. Rewrite the function using [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt{3x + 6} \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
First, square both sides to get rid of the square root:
[tex]\[ y^2 = 3x + 6 \][/tex]
Next, isolate [tex]\( x \)[/tex] by first subtracting 6 from both sides:
[tex]\[ y^2 - 6 = 3x \][/tex]
Then, divide both sides by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y^2 - 6}{3} \][/tex]
3. Express the inverse function:
The inverse function [tex]\( f^{-1}(x) \)[/tex] is given by:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3} \][/tex]
Now, we need to determine the valid domain for the inverse. The function [tex]\( f(x) = \sqrt{3x + 6} \)[/tex] is defined for values of [tex]\( x \)[/tex] that make the expression under the square root non-negative. This translates to:
[tex]\[ 3x + 6 \ge 0 \][/tex]
[tex]\[ 3x \ge -6 \][/tex]
[tex]\[ x \ge -2 \][/tex]
However, since the original function [tex]\( f(x) \)[/tex] involves a square root and outputs non-negative numbers, the inverse function [tex]\( f^{-1}(x) \)[/tex] should be real and non-negative for [tex]\( x \geq 0 \)[/tex]:
Thus, the correct inverse and its domain are:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3}, \quad x \geq 0 \][/tex]
From the given choices, it matches:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3}, x \geq 0 \][/tex]
So, the correct option is:
1. [tex]\( f^{-1}(x) = \frac{x^2 - 6}{3}, x \geq 0 \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.