Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the inverse function of [tex]\( f(x) = \sqrt{3x + 6} \)[/tex], follow these steps:
1. Rewrite the function using [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt{3x + 6} \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
First, square both sides to get rid of the square root:
[tex]\[ y^2 = 3x + 6 \][/tex]
Next, isolate [tex]\( x \)[/tex] by first subtracting 6 from both sides:
[tex]\[ y^2 - 6 = 3x \][/tex]
Then, divide both sides by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y^2 - 6}{3} \][/tex]
3. Express the inverse function:
The inverse function [tex]\( f^{-1}(x) \)[/tex] is given by:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3} \][/tex]
Now, we need to determine the valid domain for the inverse. The function [tex]\( f(x) = \sqrt{3x + 6} \)[/tex] is defined for values of [tex]\( x \)[/tex] that make the expression under the square root non-negative. This translates to:
[tex]\[ 3x + 6 \ge 0 \][/tex]
[tex]\[ 3x \ge -6 \][/tex]
[tex]\[ x \ge -2 \][/tex]
However, since the original function [tex]\( f(x) \)[/tex] involves a square root and outputs non-negative numbers, the inverse function [tex]\( f^{-1}(x) \)[/tex] should be real and non-negative for [tex]\( x \geq 0 \)[/tex]:
Thus, the correct inverse and its domain are:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3}, \quad x \geq 0 \][/tex]
From the given choices, it matches:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3}, x \geq 0 \][/tex]
So, the correct option is:
1. [tex]\( f^{-1}(x) = \frac{x^2 - 6}{3}, x \geq 0 \)[/tex]
1. Rewrite the function using [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt{3x + 6} \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
First, square both sides to get rid of the square root:
[tex]\[ y^2 = 3x + 6 \][/tex]
Next, isolate [tex]\( x \)[/tex] by first subtracting 6 from both sides:
[tex]\[ y^2 - 6 = 3x \][/tex]
Then, divide both sides by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y^2 - 6}{3} \][/tex]
3. Express the inverse function:
The inverse function [tex]\( f^{-1}(x) \)[/tex] is given by:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3} \][/tex]
Now, we need to determine the valid domain for the inverse. The function [tex]\( f(x) = \sqrt{3x + 6} \)[/tex] is defined for values of [tex]\( x \)[/tex] that make the expression under the square root non-negative. This translates to:
[tex]\[ 3x + 6 \ge 0 \][/tex]
[tex]\[ 3x \ge -6 \][/tex]
[tex]\[ x \ge -2 \][/tex]
However, since the original function [tex]\( f(x) \)[/tex] involves a square root and outputs non-negative numbers, the inverse function [tex]\( f^{-1}(x) \)[/tex] should be real and non-negative for [tex]\( x \geq 0 \)[/tex]:
Thus, the correct inverse and its domain are:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3}, \quad x \geq 0 \][/tex]
From the given choices, it matches:
[tex]\[ f^{-1}(x) = \frac{x^2 - 6}{3}, x \geq 0 \][/tex]
So, the correct option is:
1. [tex]\( f^{-1}(x) = \frac{x^2 - 6}{3}, x \geq 0 \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.