Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the slope of the linear function represented by the given table, follow these steps:
1. Select any two points from the table. Let's choose the points [tex]\((-2, 8)\)[/tex] and [tex]\((-1, 2)\)[/tex].
2. Use the slope formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are two points on the line.
3. Plug in the coordinates of the selected points into the formula. For the points [tex]\((-2, 8)\)[/tex] and [tex]\((-1, 2)\)[/tex]:
[tex]\[ x_1 = -2, \quad y_1 = 8, \quad x_2 = -1, \quad y_2 = 2 \][/tex]
4. Substitute these values into the slope formula:
[tex]\[ \text{slope} = \frac{2 - 8}{-1 - (-2)} = \frac{-6}{1} = -6 \][/tex]
5. Therefore, the slope of the function is [tex]\(-6\)[/tex].
So the correct option is:
[tex]\[ -6 \][/tex]
1. Select any two points from the table. Let's choose the points [tex]\((-2, 8)\)[/tex] and [tex]\((-1, 2)\)[/tex].
2. Use the slope formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are two points on the line.
3. Plug in the coordinates of the selected points into the formula. For the points [tex]\((-2, 8)\)[/tex] and [tex]\((-1, 2)\)[/tex]:
[tex]\[ x_1 = -2, \quad y_1 = 8, \quad x_2 = -1, \quad y_2 = 2 \][/tex]
4. Substitute these values into the slope formula:
[tex]\[ \text{slope} = \frac{2 - 8}{-1 - (-2)} = \frac{-6}{1} = -6 \][/tex]
5. Therefore, the slope of the function is [tex]\(-6\)[/tex].
So the correct option is:
[tex]\[ -6 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.