Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the sum of the polynomials [tex]\((5x^3 - 7x^2 + x^4) + (12x^2 + 3x^3 - 2x^4)\)[/tex], follow these steps:
1. Align the polynomials by their degrees and combine like terms:
[tex]\[ \begin{aligned} & (+x^4) + (-2x^4) \\ & (+5x^3) + (+3x^3) \\ & (-7x^2) + (+12x^2) \\ \end{aligned} \][/tex]
2. Add the coefficients of the like terms:
- Coefficient of [tex]\(x^4\)[/tex]: [tex]\(1 - 2 = -1\)[/tex]
- Coefficient of [tex]\(x^3\)[/tex]: [tex]\(5 + 3 = 8\)[/tex]
- Coefficient of [tex]\(x^2\)[/tex]: [tex]\(-7 + 12 = 5\)[/tex]
3. Write the resulting polynomial by combining these like terms:
[tex]\[ -x^4 + 8x^3 + 5x^2 \][/tex]
4. Express the polynomial in standard form:
- Standard form means writing the polynomial in descending order of the powers of [tex]\(x\)[/tex].
- We already have it in standard form: [tex]\(-x^4 + 8x^3 + 5x^2\)[/tex].
5. Factor out any common terms (optional, but sometimes required):
- We can factor out [tex]\(x^2\)[/tex]:
[tex]\[ -x^4 + 8x^3 + 5x^2 = x^2(-x^2 + 8x + 5) \][/tex]
Therefore, the final answer in standard form is:
[tex]\[ \boxed{x^2(-x^2 + 8x + 5)} \][/tex]
1. Align the polynomials by their degrees and combine like terms:
[tex]\[ \begin{aligned} & (+x^4) + (-2x^4) \\ & (+5x^3) + (+3x^3) \\ & (-7x^2) + (+12x^2) \\ \end{aligned} \][/tex]
2. Add the coefficients of the like terms:
- Coefficient of [tex]\(x^4\)[/tex]: [tex]\(1 - 2 = -1\)[/tex]
- Coefficient of [tex]\(x^3\)[/tex]: [tex]\(5 + 3 = 8\)[/tex]
- Coefficient of [tex]\(x^2\)[/tex]: [tex]\(-7 + 12 = 5\)[/tex]
3. Write the resulting polynomial by combining these like terms:
[tex]\[ -x^4 + 8x^3 + 5x^2 \][/tex]
4. Express the polynomial in standard form:
- Standard form means writing the polynomial in descending order of the powers of [tex]\(x\)[/tex].
- We already have it in standard form: [tex]\(-x^4 + 8x^3 + 5x^2\)[/tex].
5. Factor out any common terms (optional, but sometimes required):
- We can factor out [tex]\(x^2\)[/tex]:
[tex]\[ -x^4 + 8x^3 + 5x^2 = x^2(-x^2 + 8x + 5) \][/tex]
Therefore, the final answer in standard form is:
[tex]\[ \boxed{x^2(-x^2 + 8x + 5)} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.