At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the sum of the polynomials [tex]\((5x^3 - 7x^2 + x^4) + (12x^2 + 3x^3 - 2x^4)\)[/tex], follow these steps:
1. Align the polynomials by their degrees and combine like terms:
[tex]\[ \begin{aligned} & (+x^4) + (-2x^4) \\ & (+5x^3) + (+3x^3) \\ & (-7x^2) + (+12x^2) \\ \end{aligned} \][/tex]
2. Add the coefficients of the like terms:
- Coefficient of [tex]\(x^4\)[/tex]: [tex]\(1 - 2 = -1\)[/tex]
- Coefficient of [tex]\(x^3\)[/tex]: [tex]\(5 + 3 = 8\)[/tex]
- Coefficient of [tex]\(x^2\)[/tex]: [tex]\(-7 + 12 = 5\)[/tex]
3. Write the resulting polynomial by combining these like terms:
[tex]\[ -x^4 + 8x^3 + 5x^2 \][/tex]
4. Express the polynomial in standard form:
- Standard form means writing the polynomial in descending order of the powers of [tex]\(x\)[/tex].
- We already have it in standard form: [tex]\(-x^4 + 8x^3 + 5x^2\)[/tex].
5. Factor out any common terms (optional, but sometimes required):
- We can factor out [tex]\(x^2\)[/tex]:
[tex]\[ -x^4 + 8x^3 + 5x^2 = x^2(-x^2 + 8x + 5) \][/tex]
Therefore, the final answer in standard form is:
[tex]\[ \boxed{x^2(-x^2 + 8x + 5)} \][/tex]
1. Align the polynomials by their degrees and combine like terms:
[tex]\[ \begin{aligned} & (+x^4) + (-2x^4) \\ & (+5x^3) + (+3x^3) \\ & (-7x^2) + (+12x^2) \\ \end{aligned} \][/tex]
2. Add the coefficients of the like terms:
- Coefficient of [tex]\(x^4\)[/tex]: [tex]\(1 - 2 = -1\)[/tex]
- Coefficient of [tex]\(x^3\)[/tex]: [tex]\(5 + 3 = 8\)[/tex]
- Coefficient of [tex]\(x^2\)[/tex]: [tex]\(-7 + 12 = 5\)[/tex]
3. Write the resulting polynomial by combining these like terms:
[tex]\[ -x^4 + 8x^3 + 5x^2 \][/tex]
4. Express the polynomial in standard form:
- Standard form means writing the polynomial in descending order of the powers of [tex]\(x\)[/tex].
- We already have it in standard form: [tex]\(-x^4 + 8x^3 + 5x^2\)[/tex].
5. Factor out any common terms (optional, but sometimes required):
- We can factor out [tex]\(x^2\)[/tex]:
[tex]\[ -x^4 + 8x^3 + 5x^2 = x^2(-x^2 + 8x + 5) \][/tex]
Therefore, the final answer in standard form is:
[tex]\[ \boxed{x^2(-x^2 + 8x + 5)} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.