At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To calculate the density of the planet in kilograms per cubic meter ([tex]\(kg/m^3\)[/tex]), we will follow these steps:
1. Convert the radius from kilometers to meters.
2. Convert the mass from grams to kilograms.
3. Compute the volume of the sphere using the formula for the volume of a sphere.
4. Use the mass and volume to find the density.
5. Express the density in standard form with three significant figures.
### Step 1: Convert the radius from kilometers to meters
The radius of the planet is [tex]\( 6371 \)[/tex] km. To convert this to meters, we multiply by [tex]\( 1000 \)[/tex]:
[tex]\[ 6371 \text{ km} = 6371 \times 1000 \, \text{m} = 6371000 \, \text{m} \][/tex]
### Step 2: Convert the mass from grams to kilograms
The mass of the planet is [tex]\( 5.97 \times 10^{27} \)[/tex] grams. To convert this to kilograms, we multiply by [tex]\( 0.001 \)[/tex] (since [tex]\( 1 \)[/tex] gram [tex]\( = 0.001 \)[/tex] kilograms):
[tex]\[ 5.97 \times 10^{27} \, \text{g} = 5.97 \times 10^{27} \times 0.001 \, \text{kg} = 5.97 \times 10^{24} \, \text{kg} \][/tex]
### Step 3: Calculate the volume of the sphere
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute the radius in meters ([tex]\( 6371000 \)[/tex] m):
[tex]\[ V = \frac{4}{3} \pi (6371000)^3 \, \text{m}^3 \][/tex]
Using the provided result, the volume [tex]\( V \)[/tex] is:
[tex]\[ V = 1.0832069168457536 \times 10^{21} \, \text{m}^3 \][/tex]
### Step 4: Calculate the density
Density [tex]\( \rho \)[/tex] is calculated as:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
Using the mass [tex]\( 5.97 \times 10^{24} \, \text{kg} \)[/tex] and the volume [tex]\( 1.0832069168457536 \times 10^{21} \, \text{m}^3 \)[/tex]:
[tex]\[ \rho = \frac{5.97 \times 10^{24}}{1.0832069168457536 \times 10^{21}} \, \text{kg/m}^3 \][/tex]
Using the provided result, the density [tex]\( \rho \)[/tex] is:
[tex]\[ \rho = 5511.412369286149 \, \text{kg/m}^3 \][/tex]
### Step 5: Express the density in standard form
To express the density in standard form with three significant figures:
[tex]\[ \rho = 5.511 \times 10^3 \, \text{kg/m}^3 \][/tex]
So, the density of the planet is:
[tex]\[ \boxed{5.511 \times 10^3 \, \text{kg/m}^3} \][/tex]
1. Convert the radius from kilometers to meters.
2. Convert the mass from grams to kilograms.
3. Compute the volume of the sphere using the formula for the volume of a sphere.
4. Use the mass and volume to find the density.
5. Express the density in standard form with three significant figures.
### Step 1: Convert the radius from kilometers to meters
The radius of the planet is [tex]\( 6371 \)[/tex] km. To convert this to meters, we multiply by [tex]\( 1000 \)[/tex]:
[tex]\[ 6371 \text{ km} = 6371 \times 1000 \, \text{m} = 6371000 \, \text{m} \][/tex]
### Step 2: Convert the mass from grams to kilograms
The mass of the planet is [tex]\( 5.97 \times 10^{27} \)[/tex] grams. To convert this to kilograms, we multiply by [tex]\( 0.001 \)[/tex] (since [tex]\( 1 \)[/tex] gram [tex]\( = 0.001 \)[/tex] kilograms):
[tex]\[ 5.97 \times 10^{27} \, \text{g} = 5.97 \times 10^{27} \times 0.001 \, \text{kg} = 5.97 \times 10^{24} \, \text{kg} \][/tex]
### Step 3: Calculate the volume of the sphere
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute the radius in meters ([tex]\( 6371000 \)[/tex] m):
[tex]\[ V = \frac{4}{3} \pi (6371000)^3 \, \text{m}^3 \][/tex]
Using the provided result, the volume [tex]\( V \)[/tex] is:
[tex]\[ V = 1.0832069168457536 \times 10^{21} \, \text{m}^3 \][/tex]
### Step 4: Calculate the density
Density [tex]\( \rho \)[/tex] is calculated as:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
Using the mass [tex]\( 5.97 \times 10^{24} \, \text{kg} \)[/tex] and the volume [tex]\( 1.0832069168457536 \times 10^{21} \, \text{m}^3 \)[/tex]:
[tex]\[ \rho = \frac{5.97 \times 10^{24}}{1.0832069168457536 \times 10^{21}} \, \text{kg/m}^3 \][/tex]
Using the provided result, the density [tex]\( \rho \)[/tex] is:
[tex]\[ \rho = 5511.412369286149 \, \text{kg/m}^3 \][/tex]
### Step 5: Express the density in standard form
To express the density in standard form with three significant figures:
[tex]\[ \rho = 5.511 \times 10^3 \, \text{kg/m}^3 \][/tex]
So, the density of the planet is:
[tex]\[ \boxed{5.511 \times 10^3 \, \text{kg/m}^3} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.