Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To calculate the density of the planet in kilograms per cubic meter ([tex]\(kg/m^3\)[/tex]), we will follow these steps:
1. Convert the radius from kilometers to meters.
2. Convert the mass from grams to kilograms.
3. Compute the volume of the sphere using the formula for the volume of a sphere.
4. Use the mass and volume to find the density.
5. Express the density in standard form with three significant figures.
### Step 1: Convert the radius from kilometers to meters
The radius of the planet is [tex]\( 6371 \)[/tex] km. To convert this to meters, we multiply by [tex]\( 1000 \)[/tex]:
[tex]\[ 6371 \text{ km} = 6371 \times 1000 \, \text{m} = 6371000 \, \text{m} \][/tex]
### Step 2: Convert the mass from grams to kilograms
The mass of the planet is [tex]\( 5.97 \times 10^{27} \)[/tex] grams. To convert this to kilograms, we multiply by [tex]\( 0.001 \)[/tex] (since [tex]\( 1 \)[/tex] gram [tex]\( = 0.001 \)[/tex] kilograms):
[tex]\[ 5.97 \times 10^{27} \, \text{g} = 5.97 \times 10^{27} \times 0.001 \, \text{kg} = 5.97 \times 10^{24} \, \text{kg} \][/tex]
### Step 3: Calculate the volume of the sphere
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute the radius in meters ([tex]\( 6371000 \)[/tex] m):
[tex]\[ V = \frac{4}{3} \pi (6371000)^3 \, \text{m}^3 \][/tex]
Using the provided result, the volume [tex]\( V \)[/tex] is:
[tex]\[ V = 1.0832069168457536 \times 10^{21} \, \text{m}^3 \][/tex]
### Step 4: Calculate the density
Density [tex]\( \rho \)[/tex] is calculated as:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
Using the mass [tex]\( 5.97 \times 10^{24} \, \text{kg} \)[/tex] and the volume [tex]\( 1.0832069168457536 \times 10^{21} \, \text{m}^3 \)[/tex]:
[tex]\[ \rho = \frac{5.97 \times 10^{24}}{1.0832069168457536 \times 10^{21}} \, \text{kg/m}^3 \][/tex]
Using the provided result, the density [tex]\( \rho \)[/tex] is:
[tex]\[ \rho = 5511.412369286149 \, \text{kg/m}^3 \][/tex]
### Step 5: Express the density in standard form
To express the density in standard form with three significant figures:
[tex]\[ \rho = 5.511 \times 10^3 \, \text{kg/m}^3 \][/tex]
So, the density of the planet is:
[tex]\[ \boxed{5.511 \times 10^3 \, \text{kg/m}^3} \][/tex]
1. Convert the radius from kilometers to meters.
2. Convert the mass from grams to kilograms.
3. Compute the volume of the sphere using the formula for the volume of a sphere.
4. Use the mass and volume to find the density.
5. Express the density in standard form with three significant figures.
### Step 1: Convert the radius from kilometers to meters
The radius of the planet is [tex]\( 6371 \)[/tex] km. To convert this to meters, we multiply by [tex]\( 1000 \)[/tex]:
[tex]\[ 6371 \text{ km} = 6371 \times 1000 \, \text{m} = 6371000 \, \text{m} \][/tex]
### Step 2: Convert the mass from grams to kilograms
The mass of the planet is [tex]\( 5.97 \times 10^{27} \)[/tex] grams. To convert this to kilograms, we multiply by [tex]\( 0.001 \)[/tex] (since [tex]\( 1 \)[/tex] gram [tex]\( = 0.001 \)[/tex] kilograms):
[tex]\[ 5.97 \times 10^{27} \, \text{g} = 5.97 \times 10^{27} \times 0.001 \, \text{kg} = 5.97 \times 10^{24} \, \text{kg} \][/tex]
### Step 3: Calculate the volume of the sphere
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Substitute the radius in meters ([tex]\( 6371000 \)[/tex] m):
[tex]\[ V = \frac{4}{3} \pi (6371000)^3 \, \text{m}^3 \][/tex]
Using the provided result, the volume [tex]\( V \)[/tex] is:
[tex]\[ V = 1.0832069168457536 \times 10^{21} \, \text{m}^3 \][/tex]
### Step 4: Calculate the density
Density [tex]\( \rho \)[/tex] is calculated as:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
Using the mass [tex]\( 5.97 \times 10^{24} \, \text{kg} \)[/tex] and the volume [tex]\( 1.0832069168457536 \times 10^{21} \, \text{m}^3 \)[/tex]:
[tex]\[ \rho = \frac{5.97 \times 10^{24}}{1.0832069168457536 \times 10^{21}} \, \text{kg/m}^3 \][/tex]
Using the provided result, the density [tex]\( \rho \)[/tex] is:
[tex]\[ \rho = 5511.412369286149 \, \text{kg/m}^3 \][/tex]
### Step 5: Express the density in standard form
To express the density in standard form with three significant figures:
[tex]\[ \rho = 5.511 \times 10^3 \, \text{kg/m}^3 \][/tex]
So, the density of the planet is:
[tex]\[ \boxed{5.511 \times 10^3 \, \text{kg/m}^3} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.