Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the problem of finding the derivative [tex]\(\frac{dy}{dx}\)[/tex] using the chain rule, given the functions [tex]\( y = f(u) \)[/tex] and [tex]\( u = g(x) \)[/tex], specifically:
[tex]\[ y = 5u^4 - 5 \quad \text{and} \quad u = 3\sqrt{x} \][/tex]
we can break the problem down into the following steps:
1. Find [tex]\(\frac{dy}{du}\)[/tex]:
Begin by differentiating [tex]\( y \)[/tex] with respect to [tex]\( u \)[/tex]. The function [tex]\( y = 5u^4 - 5 \)[/tex] is a polynomial in terms of [tex]\( u \)[/tex].
[tex]\[ \frac{dy}{du} = \frac{d(5u^4 - 5)}{du} \][/tex]
Using the power rule of differentiation, which states that [tex]\(\frac{d}{dx}[x^n] = nx^{n-1}\)[/tex], we get:
[tex]\[ \frac{dy}{du} = 5 \cdot 4u^{3} = 20u^3 \][/tex]
2. Find [tex]\(\frac{du}{dx}\)[/tex]:
Next, we differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]. The function [tex]\( u = 3\sqrt{x} \)[/tex] can also be written as [tex]\( u = 3x^{1/2} \)[/tex].
[tex]\[ \frac{du}{dx} = \frac{d(3x^{1/2})}{dx} \][/tex]
Again, using the power rule:
[tex]\[ \frac{du}{dx} = 3 \cdot \frac{1}{2} x^{-1/2} = \frac{3}{2} x^{-1/2} \][/tex]
Which can be simplified to:
[tex]\[ \frac{du}{dx} = \frac{3}{2\sqrt{x}} \][/tex]
3. Apply the chain rule:
The chain rule in Leibniz's notation states that:
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
Substitute the expressions we found for [tex]\(\frac{dy}{du}\)[/tex] and [tex]\(\frac{du}{dx}\)[/tex] into this formula:
[tex]\[ \frac{dy}{dx} = (20u^3) \cdot \left(\frac{3}{2\sqrt{x}}\right) \][/tex]
4. Substitute [tex]\( u = 3\sqrt{x} \)[/tex] into the expression:
Since [tex]\( u = 3\sqrt{x} \)[/tex], we can substitute this back into our expression for [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ u = 3\sqrt{x} \implies u^3 = (3\sqrt{x})^3 = 27x^{3/2} \][/tex]
Hence:
[tex]\[ \frac{dy}{dx} = 20(27x^{3/2}) \cdot \left(\frac{3}{2\sqrt{x}}\right) \][/tex]
Simplify this expression by multiplying the coefficients and combining the terms:
[tex]\[ \frac{dy}{dx} = 20 \cdot 27x^{3/2} \cdot \frac{3}{2\sqrt{x}} \][/tex]
Combine the terms:
[tex]\[ \frac{dy}{dx} = \frac{20 \cdot 27 \cdot 3}{2} x^{(3/2) - (1/2)} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1620}{2} x^{1} \][/tex]
[tex]\[ \frac{dy}{dx} = 810x \][/tex]
Thus, the derivative [tex]\(\frac{dy}{dx}\)[/tex] is:
[tex]\[ \boxed{810x} \][/tex]
[tex]\[ y = 5u^4 - 5 \quad \text{and} \quad u = 3\sqrt{x} \][/tex]
we can break the problem down into the following steps:
1. Find [tex]\(\frac{dy}{du}\)[/tex]:
Begin by differentiating [tex]\( y \)[/tex] with respect to [tex]\( u \)[/tex]. The function [tex]\( y = 5u^4 - 5 \)[/tex] is a polynomial in terms of [tex]\( u \)[/tex].
[tex]\[ \frac{dy}{du} = \frac{d(5u^4 - 5)}{du} \][/tex]
Using the power rule of differentiation, which states that [tex]\(\frac{d}{dx}[x^n] = nx^{n-1}\)[/tex], we get:
[tex]\[ \frac{dy}{du} = 5 \cdot 4u^{3} = 20u^3 \][/tex]
2. Find [tex]\(\frac{du}{dx}\)[/tex]:
Next, we differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]. The function [tex]\( u = 3\sqrt{x} \)[/tex] can also be written as [tex]\( u = 3x^{1/2} \)[/tex].
[tex]\[ \frac{du}{dx} = \frac{d(3x^{1/2})}{dx} \][/tex]
Again, using the power rule:
[tex]\[ \frac{du}{dx} = 3 \cdot \frac{1}{2} x^{-1/2} = \frac{3}{2} x^{-1/2} \][/tex]
Which can be simplified to:
[tex]\[ \frac{du}{dx} = \frac{3}{2\sqrt{x}} \][/tex]
3. Apply the chain rule:
The chain rule in Leibniz's notation states that:
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
Substitute the expressions we found for [tex]\(\frac{dy}{du}\)[/tex] and [tex]\(\frac{du}{dx}\)[/tex] into this formula:
[tex]\[ \frac{dy}{dx} = (20u^3) \cdot \left(\frac{3}{2\sqrt{x}}\right) \][/tex]
4. Substitute [tex]\( u = 3\sqrt{x} \)[/tex] into the expression:
Since [tex]\( u = 3\sqrt{x} \)[/tex], we can substitute this back into our expression for [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ u = 3\sqrt{x} \implies u^3 = (3\sqrt{x})^3 = 27x^{3/2} \][/tex]
Hence:
[tex]\[ \frac{dy}{dx} = 20(27x^{3/2}) \cdot \left(\frac{3}{2\sqrt{x}}\right) \][/tex]
Simplify this expression by multiplying the coefficients and combining the terms:
[tex]\[ \frac{dy}{dx} = 20 \cdot 27x^{3/2} \cdot \frac{3}{2\sqrt{x}} \][/tex]
Combine the terms:
[tex]\[ \frac{dy}{dx} = \frac{20 \cdot 27 \cdot 3}{2} x^{(3/2) - (1/2)} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1620}{2} x^{1} \][/tex]
[tex]\[ \frac{dy}{dx} = 810x \][/tex]
Thus, the derivative [tex]\(\frac{dy}{dx}\)[/tex] is:
[tex]\[ \boxed{810x} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.