Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this problem, we use the information provided in the table:
- Age: 12 years
- Mean Height: 58 inches
- Standard Deviation: 2.3 inches
We consider the following statistical ranges for normally distributed data based on the empirical rule:
1. 68% Data Range:
- This range includes the mean height plus or minus one standard deviation.
- Lower bound: [tex]\( \text{Mean Height} - 1 \times \text{Standard Deviation} = 58 - 2.3 = 55.7 \)[/tex] inches
- Upper bound: [tex]\( \text{Mean Height} + 1 \times \text{Standard Deviation} = 58 + 2.3 = 60.3 \)[/tex] inches
Therefore, about 68% of sixth-grade students will have heights between 55.7 inches and 60.3 inches.
2. 95% Data Range:
- This range includes the mean height plus or minus two standard deviations.
- Lower bound: [tex]\( \text{Mean Height} - 2 \times \text{Standard Deviation} = 58 - 2 \times 2.3 = 53.4 \)[/tex] inches
- Upper bound: [tex]\( \text{Mean Height} + 2 \times \text{Standard Deviation} = 58 + 2 \times 2.3 = 62.6 \)[/tex] inches
Therefore, about 95% of sixth-grade students will have heights between 53.4 inches and 62.6 inches.
So the completed statements are:
1. About 68% of sixth-grade students will have heights between 55.7 inches and 60.3 inches.
2. About 95% of sixth-grade students will have heights between 53.4 inches and 62.6 inches.
- Age: 12 years
- Mean Height: 58 inches
- Standard Deviation: 2.3 inches
We consider the following statistical ranges for normally distributed data based on the empirical rule:
1. 68% Data Range:
- This range includes the mean height plus or minus one standard deviation.
- Lower bound: [tex]\( \text{Mean Height} - 1 \times \text{Standard Deviation} = 58 - 2.3 = 55.7 \)[/tex] inches
- Upper bound: [tex]\( \text{Mean Height} + 1 \times \text{Standard Deviation} = 58 + 2.3 = 60.3 \)[/tex] inches
Therefore, about 68% of sixth-grade students will have heights between 55.7 inches and 60.3 inches.
2. 95% Data Range:
- This range includes the mean height plus or minus two standard deviations.
- Lower bound: [tex]\( \text{Mean Height} - 2 \times \text{Standard Deviation} = 58 - 2 \times 2.3 = 53.4 \)[/tex] inches
- Upper bound: [tex]\( \text{Mean Height} + 2 \times \text{Standard Deviation} = 58 + 2 \times 2.3 = 62.6 \)[/tex] inches
Therefore, about 95% of sixth-grade students will have heights between 53.4 inches and 62.6 inches.
So the completed statements are:
1. About 68% of sixth-grade students will have heights between 55.7 inches and 60.3 inches.
2. About 95% of sixth-grade students will have heights between 53.4 inches and 62.6 inches.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.