Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the vertex of the given absolute value function, [tex]\( f(x) = |x - 5| + 10 \)[/tex], we can use the vertex form of an absolute value function: [tex]\( f(x) = a|x - h| + k \)[/tex].
Let's break it down step-by-step:
1. Identify the horizontal shift:
- In the expression [tex]\( |x - 5| \)[/tex], the term inside the absolute value, [tex]\( x - 5 \)[/tex], indicates a horizontal shift.
- The horizontal shift [tex]\( h \)[/tex] is obtained by equating the expression inside the absolute value to zero: [tex]\( x - 5 = 0 \)[/tex]. Therefore, [tex]\( h = 5 \)[/tex].
2. Identify the vertical shift:
- The constant term outside the absolute value, [tex]\( +10 \)[/tex], indicates a vertical shift.
- The vertical shift [tex]\( k \)[/tex] is given directly by this constant term: [tex]\( k = 10 \)[/tex].
3. Determine the vertex:
- The vertex [tex]\( (h, k) \)[/tex] combines the horizontal and vertical shifts.
Putting it all together, the vertex of the function [tex]\( f(x) = |x - 5| + 10 \)[/tex] is:
[tex]\[ (h, k) = (5, 10) \][/tex]
So, the vertex is at [tex]\((5, 10)\)[/tex].
Let's break it down step-by-step:
1. Identify the horizontal shift:
- In the expression [tex]\( |x - 5| \)[/tex], the term inside the absolute value, [tex]\( x - 5 \)[/tex], indicates a horizontal shift.
- The horizontal shift [tex]\( h \)[/tex] is obtained by equating the expression inside the absolute value to zero: [tex]\( x - 5 = 0 \)[/tex]. Therefore, [tex]\( h = 5 \)[/tex].
2. Identify the vertical shift:
- The constant term outside the absolute value, [tex]\( +10 \)[/tex], indicates a vertical shift.
- The vertical shift [tex]\( k \)[/tex] is given directly by this constant term: [tex]\( k = 10 \)[/tex].
3. Determine the vertex:
- The vertex [tex]\( (h, k) \)[/tex] combines the horizontal and vertical shifts.
Putting it all together, the vertex of the function [tex]\( f(x) = |x - 5| + 10 \)[/tex] is:
[tex]\[ (h, k) = (5, 10) \][/tex]
So, the vertex is at [tex]\((5, 10)\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.