Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the range within which approximately 99.7% of the heights of 12-year-old sixth-grade students fall, we can use the Empirical Rule, which states that for a normal distribution:
- About 68% of the data falls within 1 standard deviation of the mean.
- About 95% of the data falls within 2 standard deviations of the mean.
- About 99.7% of the data falls within 3 standard deviations of the mean.
Given:
- Mean height (μ) = 58 inches
- Standard deviation (σ) = 2.3 inches
To find the range for 99.7% of the students' heights, we need to calculate the bounds that lie 3 standard deviations away from the mean:
1. Lower bound: [tex]\( \text{mean height} - 3 \times \text{standard deviation} \)[/tex]
2. Upper bound: [tex]\( \text{mean height} + 3 \times \text{standard deviation} \)[/tex]
Substituting the given values:
1. Lower bound = [tex]\( 58 \, \text{inches} - 3 \times 2.3 \, \text{inches} = 58 - 6.9 = 51.1 \)[/tex] inches
2. Upper bound = [tex]\( 58 \, \text{inches} + 3 \times 2.3 \, \text{inches} = 58 + 6.9 = 64.9 \)[/tex] inches
Therefore, about 99.7% of sixth-grade students will have heights between [tex]\(\square\)[/tex] inches = 51.1 inches and [tex]\(\square\)[/tex] inches = 64.9 inches.
- About 68% of the data falls within 1 standard deviation of the mean.
- About 95% of the data falls within 2 standard deviations of the mean.
- About 99.7% of the data falls within 3 standard deviations of the mean.
Given:
- Mean height (μ) = 58 inches
- Standard deviation (σ) = 2.3 inches
To find the range for 99.7% of the students' heights, we need to calculate the bounds that lie 3 standard deviations away from the mean:
1. Lower bound: [tex]\( \text{mean height} - 3 \times \text{standard deviation} \)[/tex]
2. Upper bound: [tex]\( \text{mean height} + 3 \times \text{standard deviation} \)[/tex]
Substituting the given values:
1. Lower bound = [tex]\( 58 \, \text{inches} - 3 \times 2.3 \, \text{inches} = 58 - 6.9 = 51.1 \)[/tex] inches
2. Upper bound = [tex]\( 58 \, \text{inches} + 3 \times 2.3 \, \text{inches} = 58 + 6.9 = 64.9 \)[/tex] inches
Therefore, about 99.7% of sixth-grade students will have heights between [tex]\(\square\)[/tex] inches = 51.1 inches and [tex]\(\square\)[/tex] inches = 64.9 inches.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.