Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's analyze the problem step-by-step. The table given provides probabilities associated with z-scores under a standard normal distribution.
### Step-by-Step Solution:
1. Understanding z-scores and the Standard Normal Distribution:
- A z-score represents the number of standard deviations a data point is from the mean of a distribution.
- The standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1.
- The values in the table represent the cumulative probability up to a certain z-score.
2. Given Table Interpretation:
[tex]\[ \begin{tabular}{|c|c|} \hline$z$ & Probability \\ \hline 0.00 & 0.5000 \\ \hline 1.00 & 0.8413 \\ \hline 2.00 & 0.9772 \\ \hline 3.00 & 0.9987 \\ \hline \end{tabular} \][/tex]
- For a z-score of [tex]\(0.00\)[/tex], the cumulative probability is 0.5000.
- For a z-score of [tex]\(1.00\)[/tex], the cumulative probability is 0.8413.
- For a z-score of [tex]\(2.00\)[/tex], the cumulative probability is 0.9772.
- For a z-score of [tex]\(3.00\)[/tex], the cumulative probability is 0.9987.
3. Assessing Given Probabilities for Specific z-Scores:
- We are provided with particular z-scores [tex]\(0.02\)[/tex], [tex]\(0.16\)[/tex], and [tex]\(10.00\)[/tex] (although [tex]\(10.00\)[/tex] seems unusually high for most contexts).
4. Matching Given z-Scores to the Nearest Probabilities:
- While precise values aren’t directly listed in the provided table, we can consider:
- Probabilities corresponding closely to typical z-scores seen in the data.
- Example: [tex]\(0.02\)[/tex] and [tex]\(0.16\)[/tex] are very close to [tex]\(0.00\)[/tex].
5. Approximation/Estimation Approach:
- Based on standard distributions and typical tabulated cumulative probabilities:
[tex]\[ \begin{align*} \text{For } z & = 0.02 \\ \text{Approximate Probability} & = 0.5000 \\ \text{Explanation: } z=0.02 & \text{ is very close to } z=0.00. \end{align*} \][/tex]
[tex]\[ \begin{align*} \text{For } z & = 0.16 \\ \text{Approximate Probability} & = 0.8413 \\ \text{Explanation: } z=0.16 & \text{ is reasonably estimated by linear approximation from the cumulative distribution curve.} \end{align*} \][/tex]
[tex]\[ \begin{align*} \text{For } z & = 10.00 \\ \text{Approximate Probability} & = 0.9772 \\ \text{Explanation: } The very high z-score & \text{ indicates being far into the higher probability region beyond accessible table values.} \end{align*} \][/tex]
### Final Result:
Thus, the likely corresponding probabilities for [tex]\(z = 0.02\)[/tex], [tex]\(z = 0.16\)[/tex], and [tex]\(z = 10.00\)[/tex] respectively would be:
[tex]\[ (0.5, 0.8413, 0.9772) \][/tex]
These numbers are based on standard z-table values and conventional linear/interpolative methods in understanding the distribution curve.
### Step-by-Step Solution:
1. Understanding z-scores and the Standard Normal Distribution:
- A z-score represents the number of standard deviations a data point is from the mean of a distribution.
- The standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1.
- The values in the table represent the cumulative probability up to a certain z-score.
2. Given Table Interpretation:
[tex]\[ \begin{tabular}{|c|c|} \hline$z$ & Probability \\ \hline 0.00 & 0.5000 \\ \hline 1.00 & 0.8413 \\ \hline 2.00 & 0.9772 \\ \hline 3.00 & 0.9987 \\ \hline \end{tabular} \][/tex]
- For a z-score of [tex]\(0.00\)[/tex], the cumulative probability is 0.5000.
- For a z-score of [tex]\(1.00\)[/tex], the cumulative probability is 0.8413.
- For a z-score of [tex]\(2.00\)[/tex], the cumulative probability is 0.9772.
- For a z-score of [tex]\(3.00\)[/tex], the cumulative probability is 0.9987.
3. Assessing Given Probabilities for Specific z-Scores:
- We are provided with particular z-scores [tex]\(0.02\)[/tex], [tex]\(0.16\)[/tex], and [tex]\(10.00\)[/tex] (although [tex]\(10.00\)[/tex] seems unusually high for most contexts).
4. Matching Given z-Scores to the Nearest Probabilities:
- While precise values aren’t directly listed in the provided table, we can consider:
- Probabilities corresponding closely to typical z-scores seen in the data.
- Example: [tex]\(0.02\)[/tex] and [tex]\(0.16\)[/tex] are very close to [tex]\(0.00\)[/tex].
5. Approximation/Estimation Approach:
- Based on standard distributions and typical tabulated cumulative probabilities:
[tex]\[ \begin{align*} \text{For } z & = 0.02 \\ \text{Approximate Probability} & = 0.5000 \\ \text{Explanation: } z=0.02 & \text{ is very close to } z=0.00. \end{align*} \][/tex]
[tex]\[ \begin{align*} \text{For } z & = 0.16 \\ \text{Approximate Probability} & = 0.8413 \\ \text{Explanation: } z=0.16 & \text{ is reasonably estimated by linear approximation from the cumulative distribution curve.} \end{align*} \][/tex]
[tex]\[ \begin{align*} \text{For } z & = 10.00 \\ \text{Approximate Probability} & = 0.9772 \\ \text{Explanation: } The very high z-score & \text{ indicates being far into the higher probability region beyond accessible table values.} \end{align*} \][/tex]
### Final Result:
Thus, the likely corresponding probabilities for [tex]\(z = 0.02\)[/tex], [tex]\(z = 0.16\)[/tex], and [tex]\(z = 10.00\)[/tex] respectively would be:
[tex]\[ (0.5, 0.8413, 0.9772) \][/tex]
These numbers are based on standard z-table values and conventional linear/interpolative methods in understanding the distribution curve.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.