Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which reactions have an increase in entropy, we consider the change in the number of moles of gas during the reaction. The change in entropy is generally related to the change in the number of gas molecules; if the number of gas molecules increases, the entropy of the system typically increases.
Let's go through each reaction step by step:
### Reaction A:
[tex]\[ 2 \, \text{CO (g)} + 2 \, \text{NO (g)} \rightarrow 2 \, \text{CO}_2 \, \text{(g)} + \text{N}_2 \, \text{(g)} \][/tex]
Calculate the change in the number of gas moles:
- Reactants: [tex]\(2 \, \text{CO (g)} + 2 \, \text{NO (g)} = 4\)[/tex] moles of gas
- Products: [tex]\(2 \, \text{CO}_2 \, \text{(g)} + \text{N}_2 \, \text{(g)} = 3\)[/tex] moles of gas
Change in moles: [tex]\(3 - 4 = -1\)[/tex]
### Reaction B:
[tex]\[ 2 \, \text{H}_2\text{S (g)} + 3 \, \text{O}_2 \, \text{(g)} \rightarrow 2 \, \text{H}_2\text{O (g)} + 2 \, \text{SO}_2 \, \text{(g)} \][/tex]
Calculate the change in the number of gas moles:
- Reactants: [tex]\(2 \, \text{H}_2\text{S (g)} + 3 \, \text{O}_2 \, \text{(g)} = 5\)[/tex] moles of gas
- Products: [tex]\(2 \, \text{H}_2\text{O (g)} + 2 \, \text{SO}_2 \, \text{(g)} = 4\)[/tex] moles of gas
Change in moles: [tex]\(4 - 5 = -1\)[/tex]
### Reaction C:
[tex]\[ \text{CH}_4 \, \text{(g)} + \text{H}_2\text{O (g)} \rightarrow \text{CO (g)} + 3 \, \text{H}_2 \, \text{(g)} \][/tex]
Calculate the change in the number of gas moles:
- Reactants: [tex]\(\text{CH}_4 \, \text{(g)} + \text{H}_2\text{O (g)} = 2\)[/tex] moles of gas
- Products: [tex]\(\text{CO (g)} + 3 \, \text{H}_2 \, \text{(g)} = 4\)[/tex] moles of gas
Change in moles: [tex]\(4 - 2 = 2\)[/tex]
### Reaction D:
[tex]\[ 2 \, \text{NO (g)} + 2 \, \text{H}_2 \, \text{(g)} \rightarrow \text{N}_2 \, \text{(g)} + 2 \, \text{H}_2\text{O (g)} \][/tex]
Calculate the change in the number of gas moles:
- Reactants: [tex]\(2 \, \text{NO (g)} + 2 \, \text{H}_2 \, \text{(g)} = 4\)[/tex] moles of gas
- Products: [tex]\(\text{N}_2 \, \text{(g)} + 2 \, \text{H}_2\text{O (g)} = 3\)[/tex] moles of gas
Change in moles: [tex]\(3 - 4 = -1\)[/tex]
### Summary:
- Reaction A: Change in moles = -1 (Decrease in entropy)
- Reaction B: Change in moles = -1 (Decrease in entropy)
- Reaction C: Change in moles = 2 (Increase in entropy)
- Reaction D: Change in moles = -1 (Decrease in entropy)
Thus, the reaction with an increase in entropy is Reaction C:
[tex]\[ \text{CH}_4 \, \text{(g)} + \text{H}_2\text{O (g)} \rightarrow \text{CO (g)} + 3 \, \text{H}_2 \, \text{(g)} \][/tex]
Let's go through each reaction step by step:
### Reaction A:
[tex]\[ 2 \, \text{CO (g)} + 2 \, \text{NO (g)} \rightarrow 2 \, \text{CO}_2 \, \text{(g)} + \text{N}_2 \, \text{(g)} \][/tex]
Calculate the change in the number of gas moles:
- Reactants: [tex]\(2 \, \text{CO (g)} + 2 \, \text{NO (g)} = 4\)[/tex] moles of gas
- Products: [tex]\(2 \, \text{CO}_2 \, \text{(g)} + \text{N}_2 \, \text{(g)} = 3\)[/tex] moles of gas
Change in moles: [tex]\(3 - 4 = -1\)[/tex]
### Reaction B:
[tex]\[ 2 \, \text{H}_2\text{S (g)} + 3 \, \text{O}_2 \, \text{(g)} \rightarrow 2 \, \text{H}_2\text{O (g)} + 2 \, \text{SO}_2 \, \text{(g)} \][/tex]
Calculate the change in the number of gas moles:
- Reactants: [tex]\(2 \, \text{H}_2\text{S (g)} + 3 \, \text{O}_2 \, \text{(g)} = 5\)[/tex] moles of gas
- Products: [tex]\(2 \, \text{H}_2\text{O (g)} + 2 \, \text{SO}_2 \, \text{(g)} = 4\)[/tex] moles of gas
Change in moles: [tex]\(4 - 5 = -1\)[/tex]
### Reaction C:
[tex]\[ \text{CH}_4 \, \text{(g)} + \text{H}_2\text{O (g)} \rightarrow \text{CO (g)} + 3 \, \text{H}_2 \, \text{(g)} \][/tex]
Calculate the change in the number of gas moles:
- Reactants: [tex]\(\text{CH}_4 \, \text{(g)} + \text{H}_2\text{O (g)} = 2\)[/tex] moles of gas
- Products: [tex]\(\text{CO (g)} + 3 \, \text{H}_2 \, \text{(g)} = 4\)[/tex] moles of gas
Change in moles: [tex]\(4 - 2 = 2\)[/tex]
### Reaction D:
[tex]\[ 2 \, \text{NO (g)} + 2 \, \text{H}_2 \, \text{(g)} \rightarrow \text{N}_2 \, \text{(g)} + 2 \, \text{H}_2\text{O (g)} \][/tex]
Calculate the change in the number of gas moles:
- Reactants: [tex]\(2 \, \text{NO (g)} + 2 \, \text{H}_2 \, \text{(g)} = 4\)[/tex] moles of gas
- Products: [tex]\(\text{N}_2 \, \text{(g)} + 2 \, \text{H}_2\text{O (g)} = 3\)[/tex] moles of gas
Change in moles: [tex]\(3 - 4 = -1\)[/tex]
### Summary:
- Reaction A: Change in moles = -1 (Decrease in entropy)
- Reaction B: Change in moles = -1 (Decrease in entropy)
- Reaction C: Change in moles = 2 (Increase in entropy)
- Reaction D: Change in moles = -1 (Decrease in entropy)
Thus, the reaction with an increase in entropy is Reaction C:
[tex]\[ \text{CH}_4 \, \text{(g)} + \text{H}_2\text{O (g)} \rightarrow \text{CO (g)} + 3 \, \text{H}_2 \, \text{(g)} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.