Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the coordinates of point [tex]\( Q \)[/tex] given the points [tex]\( P \)[/tex] and [tex]\( R \)[/tex], and the ratio [tex]\( PR : RQ = 2 : 3 \)[/tex], we can follow these steps:
### Step 1: Understanding the Given Information
1. Coordinates of [tex]\( P \)[/tex]: [tex]\((-10, 3)\)[/tex]
2. Coordinates of [tex]\( R \)[/tex]: [tex]\((4, 7)\)[/tex]
3. Ratio [tex]\( PR : RQ = 2 : 3 \)[/tex]. This means that:
- [tex]\( PR = 2 \)[/tex] parts
- [tex]\( RQ = 3 \)[/tex] parts
### Step 2: Set Up the Section Formula
Since [tex]\( R \)[/tex] divides [tex]\( PQ \)[/tex] in the ratio 2:3, the section formula for coordinates of [tex]\( R \)[/tex] is:
[tex]\[ R = \left( \frac{m x_2 + n x_1}{m+n}, \frac{m y_2 + n y_1}{m+n} \right) \][/tex]
However, we already know the coordinates of [tex]\( R \)[/tex]. Now, we need to determine the coordinates of [tex]\( Q \)[/tex] using the relation from [tex]\( R \)[/tex] and the given ratios.
### Step 3: Use the Ratios to Find Coordinates of [tex]\( Q \)[/tex]
We can determine the coordinates of [tex]\( Q \)[/tex] starting from the known point [tex]\( R = (4, 7) \)[/tex] and using the ratio backward to [tex]\( P \)[/tex].
### Step 4: Calculate [tex]\( x \)[/tex] Coordinate of [tex]\( Q \)[/tex]
We use the following backward ratio formula deriving from [tex]\( R \)[/tex] to find [tex]\( Q \)[/tex]:
[tex]\[ x_Q = \frac{x_R \cdot n - x_P \cdot m}{n} \][/tex]
Substituting values:
[tex]\[ x_Q = \frac{4 \cdot 3 - (-10) \cdot 2}{3} \][/tex]
[tex]\[ x_Q = \frac{12 + 20}{3} \][/tex]
[tex]\[ x_Q = \frac{32}{3} \][/tex]
[tex]\[ x_Q \approx 10.67 \][/tex]
### Step 5: Calculate [tex]\( y \)[/tex] Coordinate of [tex]\( Q \)[/tex]
Similarly, for [tex]\( y \)[/tex] coordinate:
[tex]\[ y_Q = \frac{y_R \cdot n - y_P \cdot m}{n} \][/tex]
Substituting values:
[tex]\[ y_Q = \frac{7 \cdot 3 - 3 \cdot 2}{3} \][/tex]
[tex]\[ y_Q = \frac{21 - 6}{3} \][/tex]
[tex]\[ y_Q = \frac{15}{3} \][/tex]
[tex]\[ y_Q = 5 \][/tex]
### Step 6: Combine the Coordinates
Now, [tex]\( Q \)[/tex] has the coordinates:
[tex]\[ Q = (10.67, 5.0) \][/tex]
Therefore, the coordinates of point [tex]\( Q \)[/tex] are [tex]\((10.67, 5.0)\)[/tex]. The closest answer option to these coordinates is not provided in the choices given in the problem statement. Based on our detailed calculations, we confirm the accurate coordinates of [tex]\( Q \)[/tex] to be approximately [tex]\((10.67, 5.0)\)[/tex].
### Step 1: Understanding the Given Information
1. Coordinates of [tex]\( P \)[/tex]: [tex]\((-10, 3)\)[/tex]
2. Coordinates of [tex]\( R \)[/tex]: [tex]\((4, 7)\)[/tex]
3. Ratio [tex]\( PR : RQ = 2 : 3 \)[/tex]. This means that:
- [tex]\( PR = 2 \)[/tex] parts
- [tex]\( RQ = 3 \)[/tex] parts
### Step 2: Set Up the Section Formula
Since [tex]\( R \)[/tex] divides [tex]\( PQ \)[/tex] in the ratio 2:3, the section formula for coordinates of [tex]\( R \)[/tex] is:
[tex]\[ R = \left( \frac{m x_2 + n x_1}{m+n}, \frac{m y_2 + n y_1}{m+n} \right) \][/tex]
However, we already know the coordinates of [tex]\( R \)[/tex]. Now, we need to determine the coordinates of [tex]\( Q \)[/tex] using the relation from [tex]\( R \)[/tex] and the given ratios.
### Step 3: Use the Ratios to Find Coordinates of [tex]\( Q \)[/tex]
We can determine the coordinates of [tex]\( Q \)[/tex] starting from the known point [tex]\( R = (4, 7) \)[/tex] and using the ratio backward to [tex]\( P \)[/tex].
### Step 4: Calculate [tex]\( x \)[/tex] Coordinate of [tex]\( Q \)[/tex]
We use the following backward ratio formula deriving from [tex]\( R \)[/tex] to find [tex]\( Q \)[/tex]:
[tex]\[ x_Q = \frac{x_R \cdot n - x_P \cdot m}{n} \][/tex]
Substituting values:
[tex]\[ x_Q = \frac{4 \cdot 3 - (-10) \cdot 2}{3} \][/tex]
[tex]\[ x_Q = \frac{12 + 20}{3} \][/tex]
[tex]\[ x_Q = \frac{32}{3} \][/tex]
[tex]\[ x_Q \approx 10.67 \][/tex]
### Step 5: Calculate [tex]\( y \)[/tex] Coordinate of [tex]\( Q \)[/tex]
Similarly, for [tex]\( y \)[/tex] coordinate:
[tex]\[ y_Q = \frac{y_R \cdot n - y_P \cdot m}{n} \][/tex]
Substituting values:
[tex]\[ y_Q = \frac{7 \cdot 3 - 3 \cdot 2}{3} \][/tex]
[tex]\[ y_Q = \frac{21 - 6}{3} \][/tex]
[tex]\[ y_Q = \frac{15}{3} \][/tex]
[tex]\[ y_Q = 5 \][/tex]
### Step 6: Combine the Coordinates
Now, [tex]\( Q \)[/tex] has the coordinates:
[tex]\[ Q = (10.67, 5.0) \][/tex]
Therefore, the coordinates of point [tex]\( Q \)[/tex] are [tex]\((10.67, 5.0)\)[/tex]. The closest answer option to these coordinates is not provided in the choices given in the problem statement. Based on our detailed calculations, we confirm the accurate coordinates of [tex]\( Q \)[/tex] to be approximately [tex]\((10.67, 5.0)\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.