Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the coordinates of point [tex]\( Q \)[/tex] given the points [tex]\( P \)[/tex] and [tex]\( R \)[/tex], and the ratio [tex]\( PR : RQ = 2 : 3 \)[/tex], we can follow these steps:
### Step 1: Understanding the Given Information
1. Coordinates of [tex]\( P \)[/tex]: [tex]\((-10, 3)\)[/tex]
2. Coordinates of [tex]\( R \)[/tex]: [tex]\((4, 7)\)[/tex]
3. Ratio [tex]\( PR : RQ = 2 : 3 \)[/tex]. This means that:
- [tex]\( PR = 2 \)[/tex] parts
- [tex]\( RQ = 3 \)[/tex] parts
### Step 2: Set Up the Section Formula
Since [tex]\( R \)[/tex] divides [tex]\( PQ \)[/tex] in the ratio 2:3, the section formula for coordinates of [tex]\( R \)[/tex] is:
[tex]\[ R = \left( \frac{m x_2 + n x_1}{m+n}, \frac{m y_2 + n y_1}{m+n} \right) \][/tex]
However, we already know the coordinates of [tex]\( R \)[/tex]. Now, we need to determine the coordinates of [tex]\( Q \)[/tex] using the relation from [tex]\( R \)[/tex] and the given ratios.
### Step 3: Use the Ratios to Find Coordinates of [tex]\( Q \)[/tex]
We can determine the coordinates of [tex]\( Q \)[/tex] starting from the known point [tex]\( R = (4, 7) \)[/tex] and using the ratio backward to [tex]\( P \)[/tex].
### Step 4: Calculate [tex]\( x \)[/tex] Coordinate of [tex]\( Q \)[/tex]
We use the following backward ratio formula deriving from [tex]\( R \)[/tex] to find [tex]\( Q \)[/tex]:
[tex]\[ x_Q = \frac{x_R \cdot n - x_P \cdot m}{n} \][/tex]
Substituting values:
[tex]\[ x_Q = \frac{4 \cdot 3 - (-10) \cdot 2}{3} \][/tex]
[tex]\[ x_Q = \frac{12 + 20}{3} \][/tex]
[tex]\[ x_Q = \frac{32}{3} \][/tex]
[tex]\[ x_Q \approx 10.67 \][/tex]
### Step 5: Calculate [tex]\( y \)[/tex] Coordinate of [tex]\( Q \)[/tex]
Similarly, for [tex]\( y \)[/tex] coordinate:
[tex]\[ y_Q = \frac{y_R \cdot n - y_P \cdot m}{n} \][/tex]
Substituting values:
[tex]\[ y_Q = \frac{7 \cdot 3 - 3 \cdot 2}{3} \][/tex]
[tex]\[ y_Q = \frac{21 - 6}{3} \][/tex]
[tex]\[ y_Q = \frac{15}{3} \][/tex]
[tex]\[ y_Q = 5 \][/tex]
### Step 6: Combine the Coordinates
Now, [tex]\( Q \)[/tex] has the coordinates:
[tex]\[ Q = (10.67, 5.0) \][/tex]
Therefore, the coordinates of point [tex]\( Q \)[/tex] are [tex]\((10.67, 5.0)\)[/tex]. The closest answer option to these coordinates is not provided in the choices given in the problem statement. Based on our detailed calculations, we confirm the accurate coordinates of [tex]\( Q \)[/tex] to be approximately [tex]\((10.67, 5.0)\)[/tex].
### Step 1: Understanding the Given Information
1. Coordinates of [tex]\( P \)[/tex]: [tex]\((-10, 3)\)[/tex]
2. Coordinates of [tex]\( R \)[/tex]: [tex]\((4, 7)\)[/tex]
3. Ratio [tex]\( PR : RQ = 2 : 3 \)[/tex]. This means that:
- [tex]\( PR = 2 \)[/tex] parts
- [tex]\( RQ = 3 \)[/tex] parts
### Step 2: Set Up the Section Formula
Since [tex]\( R \)[/tex] divides [tex]\( PQ \)[/tex] in the ratio 2:3, the section formula for coordinates of [tex]\( R \)[/tex] is:
[tex]\[ R = \left( \frac{m x_2 + n x_1}{m+n}, \frac{m y_2 + n y_1}{m+n} \right) \][/tex]
However, we already know the coordinates of [tex]\( R \)[/tex]. Now, we need to determine the coordinates of [tex]\( Q \)[/tex] using the relation from [tex]\( R \)[/tex] and the given ratios.
### Step 3: Use the Ratios to Find Coordinates of [tex]\( Q \)[/tex]
We can determine the coordinates of [tex]\( Q \)[/tex] starting from the known point [tex]\( R = (4, 7) \)[/tex] and using the ratio backward to [tex]\( P \)[/tex].
### Step 4: Calculate [tex]\( x \)[/tex] Coordinate of [tex]\( Q \)[/tex]
We use the following backward ratio formula deriving from [tex]\( R \)[/tex] to find [tex]\( Q \)[/tex]:
[tex]\[ x_Q = \frac{x_R \cdot n - x_P \cdot m}{n} \][/tex]
Substituting values:
[tex]\[ x_Q = \frac{4 \cdot 3 - (-10) \cdot 2}{3} \][/tex]
[tex]\[ x_Q = \frac{12 + 20}{3} \][/tex]
[tex]\[ x_Q = \frac{32}{3} \][/tex]
[tex]\[ x_Q \approx 10.67 \][/tex]
### Step 5: Calculate [tex]\( y \)[/tex] Coordinate of [tex]\( Q \)[/tex]
Similarly, for [tex]\( y \)[/tex] coordinate:
[tex]\[ y_Q = \frac{y_R \cdot n - y_P \cdot m}{n} \][/tex]
Substituting values:
[tex]\[ y_Q = \frac{7 \cdot 3 - 3 \cdot 2}{3} \][/tex]
[tex]\[ y_Q = \frac{21 - 6}{3} \][/tex]
[tex]\[ y_Q = \frac{15}{3} \][/tex]
[tex]\[ y_Q = 5 \][/tex]
### Step 6: Combine the Coordinates
Now, [tex]\( Q \)[/tex] has the coordinates:
[tex]\[ Q = (10.67, 5.0) \][/tex]
Therefore, the coordinates of point [tex]\( Q \)[/tex] are [tex]\((10.67, 5.0)\)[/tex]. The closest answer option to these coordinates is not provided in the choices given in the problem statement. Based on our detailed calculations, we confirm the accurate coordinates of [tex]\( Q \)[/tex] to be approximately [tex]\((10.67, 5.0)\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.