Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's carefully work through the given data to understand the solution step-by-step.
We are provided with a table that shows the cumulative probability corresponding to different [tex]\( z \)[/tex]-values:
[tex]\[ \begin{tabular}{|c|c|} \hline \(\mathbf{z}\) & \(\mathbf{P(Z \leq z)}\) \\ \hline 0.00 & 0.5000 \\ \hline 1.00 & 0.8413 \\ \hline 2.00 & 0.9772 \\ \hline 3.00 & 0.9987 \\ \hline \end{tabular} \][/tex]
The cumulative probability, [tex]\(P(Z \leq z)\)[/tex], is the probability that a standard normal random variable [tex]\(Z\)[/tex] is less than or equal to [tex]\(z\)[/tex].
From the table:
1. For [tex]\(z = 0.00\)[/tex], the cumulative probability [tex]\(P(Z \leq 0.00)\)[/tex] is 0.5000.
2. For [tex]\(z = 1.00\)[/tex], the cumulative probability [tex]\(P(Z \leq 1.00)\)[/tex] is 0.8413.
3. For [tex]\(z = 2.00\)[/tex], the cumulative probability [tex]\(P(Z \leq 2.00)\)[/tex] is 0.9772.
4. For [tex]\(z = 3.00\)[/tex], the cumulative probability [tex]\(P(Z \leq 3.00)\)[/tex] is 0.9987.
We are also given an intermediate probability of 0.16. This intermediate probability likely represents some fraction of the total probability distribution or may be a part of a calculation or condition, but it is not directly clear from the given information. It should be considered as an essential part of the problem, and it plays a specific role in the solution.
Summarizing:
- [tex]\(P(Z \leq 0.00) = 0.5000\)[/tex]
- [tex]\(P(Z \leq 1.00) = 0.8413\)[/tex]
- [tex]\(P(Z \leq 2.00) = 0.9772\)[/tex]
- [tex]\(P(Z \leq 3.00) = 0.9987\)[/tex]
- Intermediate probability = 0.16
Given this information and understanding the relationship between the z-values and their corresponding cumulative probabilities, these are the accurate values and should provide all needed insights for the problem at hand.
We are provided with a table that shows the cumulative probability corresponding to different [tex]\( z \)[/tex]-values:
[tex]\[ \begin{tabular}{|c|c|} \hline \(\mathbf{z}\) & \(\mathbf{P(Z \leq z)}\) \\ \hline 0.00 & 0.5000 \\ \hline 1.00 & 0.8413 \\ \hline 2.00 & 0.9772 \\ \hline 3.00 & 0.9987 \\ \hline \end{tabular} \][/tex]
The cumulative probability, [tex]\(P(Z \leq z)\)[/tex], is the probability that a standard normal random variable [tex]\(Z\)[/tex] is less than or equal to [tex]\(z\)[/tex].
From the table:
1. For [tex]\(z = 0.00\)[/tex], the cumulative probability [tex]\(P(Z \leq 0.00)\)[/tex] is 0.5000.
2. For [tex]\(z = 1.00\)[/tex], the cumulative probability [tex]\(P(Z \leq 1.00)\)[/tex] is 0.8413.
3. For [tex]\(z = 2.00\)[/tex], the cumulative probability [tex]\(P(Z \leq 2.00)\)[/tex] is 0.9772.
4. For [tex]\(z = 3.00\)[/tex], the cumulative probability [tex]\(P(Z \leq 3.00)\)[/tex] is 0.9987.
We are also given an intermediate probability of 0.16. This intermediate probability likely represents some fraction of the total probability distribution or may be a part of a calculation or condition, but it is not directly clear from the given information. It should be considered as an essential part of the problem, and it plays a specific role in the solution.
Summarizing:
- [tex]\(P(Z \leq 0.00) = 0.5000\)[/tex]
- [tex]\(P(Z \leq 1.00) = 0.8413\)[/tex]
- [tex]\(P(Z \leq 2.00) = 0.9772\)[/tex]
- [tex]\(P(Z \leq 3.00) = 0.9987\)[/tex]
- Intermediate probability = 0.16
Given this information and understanding the relationship between the z-values and their corresponding cumulative probabilities, these are the accurate values and should provide all needed insights for the problem at hand.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.