Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which function results in a horizontal compression of [tex]\( y = \frac{1}{x} \)[/tex] by a factor of 6, let us review what horizontal compression means.
1. Understanding Horizontal Compression:
- To horizontally compress a function by a factor of [tex]\( k \)[/tex], you replace [tex]\( x \)[/tex] in the original function [tex]\( f(x) \)[/tex] with [tex]\( \frac{x}{k} \)[/tex].
- For example, if [tex]\( f(x) = \frac{1}{x} \)[/tex] and you want to horizontally compress it by a factor of 6, you would replace [tex]\( x \)[/tex] with [tex]\( \frac{x}{6} \)[/tex].
2. Applying Horizontal Compression:
- Start with the original function: [tex]\( y = \frac{1}{x} \)[/tex].
- Compress horizontally by a factor of 6 by replacing [tex]\( x \)[/tex] with [tex]\( \frac{x}{6} \)[/tex]:
[tex]\[ y = \frac{1}{\frac{x}{6}} \][/tex]
3. Simplifying the Function:
- Simplify [tex]\( \frac{1}{\frac{x}{6}} \)[/tex]:
[tex]\[ y = \frac{1}{\frac{x}{6}} = \frac{1 \cdot 6}{x} = \frac{6}{x} \][/tex]
Thus, the function [tex]\( y = \frac{6}{x} \)[/tex] is the result of a horizontal compression of [tex]\( y = \frac{1}{x} \)[/tex] by a factor of 6.
Comparing this to the options:
- [tex]\( y = \frac{1}{6x} \)[/tex] is incorrect as it represents a horizontal stretch.
- [tex]\( y = -\frac{1}{6x} \)[/tex] is incorrect as it also represents a stretch and a reflection.
- [tex]\( y = \frac{6}{x} \)[/tex] is correct.
- [tex]\( y = -\frac{6}{x} \)[/tex] is incorrect as it includes an additional reflection.
Therefore, the correct option is:
[tex]\[ \boxed{y = \frac{6}{x}} \][/tex]
This corresponds to option 3.
1. Understanding Horizontal Compression:
- To horizontally compress a function by a factor of [tex]\( k \)[/tex], you replace [tex]\( x \)[/tex] in the original function [tex]\( f(x) \)[/tex] with [tex]\( \frac{x}{k} \)[/tex].
- For example, if [tex]\( f(x) = \frac{1}{x} \)[/tex] and you want to horizontally compress it by a factor of 6, you would replace [tex]\( x \)[/tex] with [tex]\( \frac{x}{6} \)[/tex].
2. Applying Horizontal Compression:
- Start with the original function: [tex]\( y = \frac{1}{x} \)[/tex].
- Compress horizontally by a factor of 6 by replacing [tex]\( x \)[/tex] with [tex]\( \frac{x}{6} \)[/tex]:
[tex]\[ y = \frac{1}{\frac{x}{6}} \][/tex]
3. Simplifying the Function:
- Simplify [tex]\( \frac{1}{\frac{x}{6}} \)[/tex]:
[tex]\[ y = \frac{1}{\frac{x}{6}} = \frac{1 \cdot 6}{x} = \frac{6}{x} \][/tex]
Thus, the function [tex]\( y = \frac{6}{x} \)[/tex] is the result of a horizontal compression of [tex]\( y = \frac{1}{x} \)[/tex] by a factor of 6.
Comparing this to the options:
- [tex]\( y = \frac{1}{6x} \)[/tex] is incorrect as it represents a horizontal stretch.
- [tex]\( y = -\frac{1}{6x} \)[/tex] is incorrect as it also represents a stretch and a reflection.
- [tex]\( y = \frac{6}{x} \)[/tex] is correct.
- [tex]\( y = -\frac{6}{x} \)[/tex] is incorrect as it includes an additional reflection.
Therefore, the correct option is:
[tex]\[ \boxed{y = \frac{6}{x}} \][/tex]
This corresponds to option 3.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.