Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to find the slope of a line that is perpendicular to a given line [tex]\( m \)[/tex].
1. Identify the given slope of line [tex]\( m \)[/tex]:
We know that the slope of line [tex]\( m \)[/tex] is [tex]\(\frac{p}{q}\)[/tex], where [tex]\( p > 0 \)[/tex] and [tex]\( q > 0 \)[/tex].
2. Understand the concept of perpendicular slopes:
For two lines to be perpendicular, the slope of one line must be the negative reciprocal of the slope of the other line. If one line has a slope [tex]\( m_1 \)[/tex], the slope of a line perpendicular to it, [tex]\( m_2 \)[/tex], can be expressed as:
[tex]\[ m_2 = -\frac{1}{m_1} \][/tex]
3. Apply this concept to our given slope:
- Our given slope [tex]\( m_1 \)[/tex] is [tex]\(\frac{p}{q}\)[/tex].
- The negative reciprocal of [tex]\(\frac{p}{q}\)[/tex] is:
[tex]\[ -\frac{1}{\left( \frac{p}{q} \right)} = -\frac{q}{p} \][/tex]
4. Conclusion:
Therefore, the slope of a line that is perpendicular to the line with slope [tex]\(\frac{p}{q}\)[/tex] is:
[tex]\[ -\frac{q}{p} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{-\frac{q}{p}} \][/tex]
1. Identify the given slope of line [tex]\( m \)[/tex]:
We know that the slope of line [tex]\( m \)[/tex] is [tex]\(\frac{p}{q}\)[/tex], where [tex]\( p > 0 \)[/tex] and [tex]\( q > 0 \)[/tex].
2. Understand the concept of perpendicular slopes:
For two lines to be perpendicular, the slope of one line must be the negative reciprocal of the slope of the other line. If one line has a slope [tex]\( m_1 \)[/tex], the slope of a line perpendicular to it, [tex]\( m_2 \)[/tex], can be expressed as:
[tex]\[ m_2 = -\frac{1}{m_1} \][/tex]
3. Apply this concept to our given slope:
- Our given slope [tex]\( m_1 \)[/tex] is [tex]\(\frac{p}{q}\)[/tex].
- The negative reciprocal of [tex]\(\frac{p}{q}\)[/tex] is:
[tex]\[ -\frac{1}{\left( \frac{p}{q} \right)} = -\frac{q}{p} \][/tex]
4. Conclusion:
Therefore, the slope of a line that is perpendicular to the line with slope [tex]\(\frac{p}{q}\)[/tex] is:
[tex]\[ -\frac{q}{p} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{-\frac{q}{p}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.