Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze the rotation of triangle [tex]\(XYZ\)[/tex] with vertices [tex]\(X(0,0)\)[/tex], [tex]\(Y(0,-2)\)[/tex], and [tex]\(Z(-2,-2)\)[/tex] to the image triangle [tex]\(X^{\prime}(0,0)\)[/tex], [tex]\(Y^{\prime}(2,0)\)[/tex], and [tex]\(Z^{\prime}(2,-2)\)[/tex].
Option 1: [tex]\(R_{0.9}, 90^{\circ}\)[/tex]
This option refers to some unconventional parameter [tex]\(0.9\)[/tex], which is unusual and does not standardly describe a normal rotation of 90 degrees. Thus, this rule does not seem correct.
Option 2: [tex]\(R_{0, 180^{\circ}}\)[/tex]
A [tex]\(180^{\circ}\)[/tex] rotation about the origin would transform [tex]\((x, y)\)[/tex] to [tex]\((-x, -y)\)[/tex]. Applying this to the vertices of the original triangle:
- [tex]\(X(0,0)\)[/tex] stays [tex]\((0,0)\)[/tex]
- [tex]\(Y(0,-2)\)[/tex] becomes [tex]\(Y'(0,2)\)[/tex]
- [tex]\(Z(-2,-2)\)[/tex] becomes [tex]\(Z'(2,2)\)[/tex]
These don't match the coordinates of the image triangle, so this rule is not correct.
Option 3: [tex]\(R_0, 270^{\circ}\)[/tex]
A [tex]\(270^{\circ}\)[/tex] rotation (or [tex]\(-90^{\circ}\)[/tex]) about the origin will transform [tex]\((x, y)\)[/tex] to [tex]\((y, -x)\)[/tex]. Applying this to the vertices:
- [tex]\(X(0,0)\)[/tex] becomes [tex]\((0,0)\)[/tex]
- [tex]\(Y(0,-2)\)[/tex] becomes [tex]\((2,0)\)[/tex]
- [tex]\(Z(-2,-2)\)[/tex] becomes [tex]\((2,-2)\)[/tex]
These match the coordinates of the image triangle exactly, so this is a valid rule.
Option 4: [tex]\((x, y) \rightarrow (-y, x)\)[/tex]
This rule represents a [tex]\(90^{\circ}\)[/tex] counterclockwise rotation, which transforms [tex]\((x, y)\)[/tex] to [tex]\((-y, x)\)[/tex]. Applying this:
- [tex]\(X(0,0)\)[/tex] becomes [tex]\((0,0)\)[/tex]
- [tex]\(Y(0,-2)\)[/tex] becomes [tex]\((2,0)\)[/tex]
- [tex]\(Z(-2,-2)\)[/tex] becomes [tex]\((2,-2)\)[/tex]
These also match the coordinates of the image triangle exactly, so this is another valid rule.
Option 5: [tex]\((x, y) \rightarrow (y, -x)\)[/tex]
This notation suggests transforming similarly to a [tex]\(270^{\circ}\)[/tex] rotation but in an unusual format. Let’s apply:
- [tex]\(X(0,0)\)[/tex] would go to [tex]\((0,0)\)[/tex]
- [tex]\(Y(0,-2)\)[/tex] would go to [tex]\((-2,0)\)[/tex]
- [tex]\(Z(-2,-2)\)[/tex] would go to [tex]\((-2,2)\)[/tex]
These results do not fit the image coordinates, so this rule is also incorrect.
Thus, the correct rules that describe the rotation are:
1. [tex]\( R_0, 270^{\circ} \)[/tex]
2. [tex]\( (x, y) \rightarrow (-y, x) \)[/tex]
The selected options are:
[tex]$ R_{0, 270^{\circ}} $[/tex]
[tex]$ (x, y) \rightarrow (-y, x) $[/tex]
Option 1: [tex]\(R_{0.9}, 90^{\circ}\)[/tex]
This option refers to some unconventional parameter [tex]\(0.9\)[/tex], which is unusual and does not standardly describe a normal rotation of 90 degrees. Thus, this rule does not seem correct.
Option 2: [tex]\(R_{0, 180^{\circ}}\)[/tex]
A [tex]\(180^{\circ}\)[/tex] rotation about the origin would transform [tex]\((x, y)\)[/tex] to [tex]\((-x, -y)\)[/tex]. Applying this to the vertices of the original triangle:
- [tex]\(X(0,0)\)[/tex] stays [tex]\((0,0)\)[/tex]
- [tex]\(Y(0,-2)\)[/tex] becomes [tex]\(Y'(0,2)\)[/tex]
- [tex]\(Z(-2,-2)\)[/tex] becomes [tex]\(Z'(2,2)\)[/tex]
These don't match the coordinates of the image triangle, so this rule is not correct.
Option 3: [tex]\(R_0, 270^{\circ}\)[/tex]
A [tex]\(270^{\circ}\)[/tex] rotation (or [tex]\(-90^{\circ}\)[/tex]) about the origin will transform [tex]\((x, y)\)[/tex] to [tex]\((y, -x)\)[/tex]. Applying this to the vertices:
- [tex]\(X(0,0)\)[/tex] becomes [tex]\((0,0)\)[/tex]
- [tex]\(Y(0,-2)\)[/tex] becomes [tex]\((2,0)\)[/tex]
- [tex]\(Z(-2,-2)\)[/tex] becomes [tex]\((2,-2)\)[/tex]
These match the coordinates of the image triangle exactly, so this is a valid rule.
Option 4: [tex]\((x, y) \rightarrow (-y, x)\)[/tex]
This rule represents a [tex]\(90^{\circ}\)[/tex] counterclockwise rotation, which transforms [tex]\((x, y)\)[/tex] to [tex]\((-y, x)\)[/tex]. Applying this:
- [tex]\(X(0,0)\)[/tex] becomes [tex]\((0,0)\)[/tex]
- [tex]\(Y(0,-2)\)[/tex] becomes [tex]\((2,0)\)[/tex]
- [tex]\(Z(-2,-2)\)[/tex] becomes [tex]\((2,-2)\)[/tex]
These also match the coordinates of the image triangle exactly, so this is another valid rule.
Option 5: [tex]\((x, y) \rightarrow (y, -x)\)[/tex]
This notation suggests transforming similarly to a [tex]\(270^{\circ}\)[/tex] rotation but in an unusual format. Let’s apply:
- [tex]\(X(0,0)\)[/tex] would go to [tex]\((0,0)\)[/tex]
- [tex]\(Y(0,-2)\)[/tex] would go to [tex]\((-2,0)\)[/tex]
- [tex]\(Z(-2,-2)\)[/tex] would go to [tex]\((-2,2)\)[/tex]
These results do not fit the image coordinates, so this rule is also incorrect.
Thus, the correct rules that describe the rotation are:
1. [tex]\( R_0, 270^{\circ} \)[/tex]
2. [tex]\( (x, y) \rightarrow (-y, x) \)[/tex]
The selected options are:
[tex]$ R_{0, 270^{\circ}} $[/tex]
[tex]$ (x, y) \rightarrow (-y, x) $[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.