Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the coefficient for [tex]\( O_2 \)[/tex] in the balanced equation for the combustion of pentane ([tex]\( C_5H_{12} \)[/tex]), we start by setting up the unbalanced chemical equation:
[tex]\[ C_5H_{12} + O_2 \rightarrow CO_2 + H_2O \][/tex]
Next, follow these steps to balance the equation:
### Step 1: Balance the carbon atoms
Pentane ([tex]\( C_5H_{12} \)[/tex]) has 5 carbon atoms. Therefore, we need 5 molecules of carbon dioxide ([tex]\( CO_2 \)[/tex]) to balance the carbon atoms:
[tex]\[ C_5H_{12} + O_2 \rightarrow 5CO_2 + H_2O \][/tex]
### Step 2: Balance the hydrogen atoms
Pentane ([tex]\( C_5H_{12} \)[/tex]) has 12 hydrogen atoms. Therefore, we need 6 molecules of water ([tex]\( H_2O \)[/tex]) to balance the hydrogen atoms (since each water molecule has 2 hydrogen atoms):
[tex]\[ C_5H_{12} + O_2 \rightarrow 5CO_2 + 6H_2O \][/tex]
### Step 3: Balance the oxygen atoms
Now we need to balance the oxygen atoms. On the right side of the equation, we have:
- From [tex]\( 5CO_2 \)[/tex]: [tex]\( 5 \times 2 = 10 \)[/tex] oxygen atoms
- From [tex]\( 6H_2O \)[/tex]: [tex]\( 6 \times 1 = 6 \)[/tex] oxygen atoms
So, the total number of oxygen atoms needed on the right side is [tex]\( 10 + 6 = 16 \)[/tex] atoms. On the left side, [tex]\( O_2 \)[/tex] is in the diatomic form, so each molecule of [tex]\( O_2 \)[/tex] provides 2 oxygen atoms. We need enough [tex]\( O_2 \)[/tex] molecules to provide 16 oxygen atoms:
[tex]\[ 2x = 16 \implies x = 8 \][/tex]
Therefore, we need 8 molecules of [tex]\( O_2 \)[/tex].
### Balanced Equation
The balanced equation for the combustion of pentane ([tex]\( C_5H_{12} \)[/tex]) is:
[tex]\[ C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O \][/tex]
Thus, the coefficient for [tex]\( O_2 \)[/tex] when the equation for the combustion of [tex]\( C_5H_{12} \)[/tex] to [tex]\( CO_2 \)[/tex] and [tex]\( H_2O \)[/tex] is balanced is [tex]\( \boxed{8} \)[/tex].
[tex]\[ C_5H_{12} + O_2 \rightarrow CO_2 + H_2O \][/tex]
Next, follow these steps to balance the equation:
### Step 1: Balance the carbon atoms
Pentane ([tex]\( C_5H_{12} \)[/tex]) has 5 carbon atoms. Therefore, we need 5 molecules of carbon dioxide ([tex]\( CO_2 \)[/tex]) to balance the carbon atoms:
[tex]\[ C_5H_{12} + O_2 \rightarrow 5CO_2 + H_2O \][/tex]
### Step 2: Balance the hydrogen atoms
Pentane ([tex]\( C_5H_{12} \)[/tex]) has 12 hydrogen atoms. Therefore, we need 6 molecules of water ([tex]\( H_2O \)[/tex]) to balance the hydrogen atoms (since each water molecule has 2 hydrogen atoms):
[tex]\[ C_5H_{12} + O_2 \rightarrow 5CO_2 + 6H_2O \][/tex]
### Step 3: Balance the oxygen atoms
Now we need to balance the oxygen atoms. On the right side of the equation, we have:
- From [tex]\( 5CO_2 \)[/tex]: [tex]\( 5 \times 2 = 10 \)[/tex] oxygen atoms
- From [tex]\( 6H_2O \)[/tex]: [tex]\( 6 \times 1 = 6 \)[/tex] oxygen atoms
So, the total number of oxygen atoms needed on the right side is [tex]\( 10 + 6 = 16 \)[/tex] atoms. On the left side, [tex]\( O_2 \)[/tex] is in the diatomic form, so each molecule of [tex]\( O_2 \)[/tex] provides 2 oxygen atoms. We need enough [tex]\( O_2 \)[/tex] molecules to provide 16 oxygen atoms:
[tex]\[ 2x = 16 \implies x = 8 \][/tex]
Therefore, we need 8 molecules of [tex]\( O_2 \)[/tex].
### Balanced Equation
The balanced equation for the combustion of pentane ([tex]\( C_5H_{12} \)[/tex]) is:
[tex]\[ C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O \][/tex]
Thus, the coefficient for [tex]\( O_2 \)[/tex] when the equation for the combustion of [tex]\( C_5H_{12} \)[/tex] to [tex]\( CO_2 \)[/tex] and [tex]\( H_2O \)[/tex] is balanced is [tex]\( \boxed{8} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.