Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the correct equation for the impulse applied by a force, let's review the concept of impulse in physics. Impulse (denoted by [tex]\( I \)[/tex]) is a measure of the change in momentum of an object when it is acted upon by a force over a given time interval. The formula for impulse is derived from Newton's second law of motion.
Newton's second law states that the force [tex]\( F \)[/tex] applied to an object is equal to the rate of change of its momentum [tex]\( p \)[/tex]:
[tex]\[ F = \frac{dp}{dt} \][/tex]
Impulse can be calculated by integrating force over the time interval [tex]\( \Delta t \)[/tex]:
[tex]\[ I = \int_{t_1}^{t_2} F \, dt \][/tex]
For a constant force [tex]\( F \)[/tex] acting over a time interval [tex]\( \Delta t \)[/tex], this simplifies to:
[tex]\[ I = F \Delta t \][/tex]
Now, let's analyze the given options:
A. [tex]\( I = F \Delta t \)[/tex] \\
This matches our understanding of impulse as the product of force and the time interval over which it acts. This is the correct equation for impulse.
B. [tex]\( I = \frac{p}{m} \)[/tex] \\
This equation suggests dividing momentum [tex]\( p \)[/tex] by mass [tex]\( m \)[/tex], which gives velocity rather than impulse. This is incorrect.
C. [tex]\( I = \frac{1}{2} k x^2 \)[/tex] \\
This formula represents the potential energy stored in a spring, according to Hooke's law, where [tex]\( k \)[/tex] is the spring constant and [tex]\( x \)[/tex] is the displacement. This is irrelevant to impulse.
D. [tex]\( 1 = -k x \)[/tex] \\
This equation seems to be a form of Hooke's law for a spring, where the force [tex]\( F \)[/tex] is directly proportional to the displacement [tex]\( x \)[/tex] (and [tex]\( k \)[/tex] is the spring constant). It does not represent impulse.
Given our understanding of impulse, the correct equation is:
A. [tex]\( I = F \Delta t \)[/tex]
Newton's second law states that the force [tex]\( F \)[/tex] applied to an object is equal to the rate of change of its momentum [tex]\( p \)[/tex]:
[tex]\[ F = \frac{dp}{dt} \][/tex]
Impulse can be calculated by integrating force over the time interval [tex]\( \Delta t \)[/tex]:
[tex]\[ I = \int_{t_1}^{t_2} F \, dt \][/tex]
For a constant force [tex]\( F \)[/tex] acting over a time interval [tex]\( \Delta t \)[/tex], this simplifies to:
[tex]\[ I = F \Delta t \][/tex]
Now, let's analyze the given options:
A. [tex]\( I = F \Delta t \)[/tex] \\
This matches our understanding of impulse as the product of force and the time interval over which it acts. This is the correct equation for impulse.
B. [tex]\( I = \frac{p}{m} \)[/tex] \\
This equation suggests dividing momentum [tex]\( p \)[/tex] by mass [tex]\( m \)[/tex], which gives velocity rather than impulse. This is incorrect.
C. [tex]\( I = \frac{1}{2} k x^2 \)[/tex] \\
This formula represents the potential energy stored in a spring, according to Hooke's law, where [tex]\( k \)[/tex] is the spring constant and [tex]\( x \)[/tex] is the displacement. This is irrelevant to impulse.
D. [tex]\( 1 = -k x \)[/tex] \\
This equation seems to be a form of Hooke's law for a spring, where the force [tex]\( F \)[/tex] is directly proportional to the displacement [tex]\( x \)[/tex] (and [tex]\( k \)[/tex] is the spring constant). It does not represent impulse.
Given our understanding of impulse, the correct equation is:
A. [tex]\( I = F \Delta t \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.