Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether the given function is linear or exponential, we will analyze the differences between successive [tex]\( y \)[/tex]-values. Here's a step-by-step explanation:
1. Define the given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 26 \\ \hline 2 & 44 \\ \hline 3 & 62 \\ \hline 4 & 80 \\ \hline 5 & 98 \\ \hline \end{array} \][/tex]
2. Calculate the differences between successive [tex]\( y \)[/tex]-values:
[tex]\[ \begin{aligned} \Delta y_1 &= y_2 - y_1 = 44 - 26 = 18, \\ \Delta y_2 &= y_3 - y_2 = 62 - 44 = 18, \\ \Delta y_3 &= y_4 - y_3 = 80 - 62 = 18, \\ \Delta y_4 &= y_5 - y_4 = 98 - 80 = 18. \end{aligned} \][/tex]
3. Analyze the differences:
We observe that the differences ([tex]\(\Delta y\)[/tex]) between each consecutive [tex]\( y \)[/tex]-value are all equal to 18. When the differences between consecutive [tex]\( y \)[/tex]-values are constant, the function is linear.
4. Compare with the given options:
- Option A: It is an exponential function because the factor between each [tex]\( x \)[/tex] and [tex]\( y \)[/tex]-value is constant.
- This is not correct because exponential functions have a constant ratio between successive [tex]\( y \)[/tex]-values, not constant differences.
- Option B: It is a linear function because the difference [tex]\( y - x \)[/tex] for each row is constant.
- There seems to be a slight error in the wording. This option could be more precisely stated as: "It is a linear function because the differences between consecutive [tex]\( y \)[/tex]-values are constant." However, given the context and the equal differences calculated, this is the most fitting option.
- Option C: It is an exponential function because the [tex]\( y \)[/tex]-values increase by an equal factor over equal intervals of [tex]\( x \)[/tex]-values.
- This is incorrect because an exponential function would increase by a multiplicative factor, not by a constant additive difference.
Thus, the correct statement about the function represented by the table is:
B. It is a linear function because the difference [tex]\( y-x \)[/tex] for each row is constant.
1. Define the given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 26 \\ \hline 2 & 44 \\ \hline 3 & 62 \\ \hline 4 & 80 \\ \hline 5 & 98 \\ \hline \end{array} \][/tex]
2. Calculate the differences between successive [tex]\( y \)[/tex]-values:
[tex]\[ \begin{aligned} \Delta y_1 &= y_2 - y_1 = 44 - 26 = 18, \\ \Delta y_2 &= y_3 - y_2 = 62 - 44 = 18, \\ \Delta y_3 &= y_4 - y_3 = 80 - 62 = 18, \\ \Delta y_4 &= y_5 - y_4 = 98 - 80 = 18. \end{aligned} \][/tex]
3. Analyze the differences:
We observe that the differences ([tex]\(\Delta y\)[/tex]) between each consecutive [tex]\( y \)[/tex]-value are all equal to 18. When the differences between consecutive [tex]\( y \)[/tex]-values are constant, the function is linear.
4. Compare with the given options:
- Option A: It is an exponential function because the factor between each [tex]\( x \)[/tex] and [tex]\( y \)[/tex]-value is constant.
- This is not correct because exponential functions have a constant ratio between successive [tex]\( y \)[/tex]-values, not constant differences.
- Option B: It is a linear function because the difference [tex]\( y - x \)[/tex] for each row is constant.
- There seems to be a slight error in the wording. This option could be more precisely stated as: "It is a linear function because the differences between consecutive [tex]\( y \)[/tex]-values are constant." However, given the context and the equal differences calculated, this is the most fitting option.
- Option C: It is an exponential function because the [tex]\( y \)[/tex]-values increase by an equal factor over equal intervals of [tex]\( x \)[/tex]-values.
- This is incorrect because an exponential function would increase by a multiplicative factor, not by a constant additive difference.
Thus, the correct statement about the function represented by the table is:
B. It is a linear function because the difference [tex]\( y-x \)[/tex] for each row is constant.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.