Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, we need to understand the basic concepts of bond energy in chemical reactions:
1. When bonds are broken, energy is absorbed.
2. When bonds are formed, energy is released.
In the given chemical reaction:
[tex]\[ H_2(g) + I_2(g) \rightarrow 2 HI(g) \][/tex]
- Breaking bonds requires energy. Here, the bonds in the reactants [tex]\( H_2 \)[/tex] and [tex]\( I_2 \)[/tex] are broken. When [tex]\( H_2 \)[/tex] breaks, energy is absorbed to break the [tex]\( H-H \)[/tex] bond. Similarly, energy is also absorbed to break the [tex]\( I-I \)[/tex] bond in [tex]\( I_2 \)[/tex].
- Forming bonds releases energy. In this reaction, [tex]\( HI \)[/tex] is formed by creating new bonds between hydrogen and iodine atoms. Therefore, energy is released when the [tex]\( H-I \)[/tex] bonds are formed in [tex]\( HI \)[/tex].
Based on these principles, the statement that correctly describes the energy changes taking place in the reaction [tex]\( H_2(g) + I_2(g) \rightarrow 2 HI(g) \)[/tex] is:
(4) Energy is absorbed as bonds are broken, and energy is released as bonds are formed.
Thus, the correct option is 4.
1. When bonds are broken, energy is absorbed.
2. When bonds are formed, energy is released.
In the given chemical reaction:
[tex]\[ H_2(g) + I_2(g) \rightarrow 2 HI(g) \][/tex]
- Breaking bonds requires energy. Here, the bonds in the reactants [tex]\( H_2 \)[/tex] and [tex]\( I_2 \)[/tex] are broken. When [tex]\( H_2 \)[/tex] breaks, energy is absorbed to break the [tex]\( H-H \)[/tex] bond. Similarly, energy is also absorbed to break the [tex]\( I-I \)[/tex] bond in [tex]\( I_2 \)[/tex].
- Forming bonds releases energy. In this reaction, [tex]\( HI \)[/tex] is formed by creating new bonds between hydrogen and iodine atoms. Therefore, energy is released when the [tex]\( H-I \)[/tex] bonds are formed in [tex]\( HI \)[/tex].
Based on these principles, the statement that correctly describes the energy changes taking place in the reaction [tex]\( H_2(g) + I_2(g) \rightarrow 2 HI(g) \)[/tex] is:
(4) Energy is absorbed as bonds are broken, and energy is released as bonds are formed.
Thus, the correct option is 4.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.