Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's analyze the given quadratic function [tex]\( f(x) = \frac{1}{5} x^2 - 5 x + 12 \)[/tex] and determine the truth of the given statements.
1. The value of [tex]\( f(-10) = 82 \)[/tex]:
To find [tex]\( f(-10) \)[/tex]:
[tex]\[ f(-10) = \frac{1}{5}(-10)^2 - 5(-10) + 12 \][/tex]
[tex]\[ f(-10) = \frac{1}{5}(100) + 50 + 12 \][/tex]
[tex]\[ f(-10) = 20 + 50 + 12 = 82 \][/tex]
Therefore, it is true that [tex]\( f(-10) = 82 \)[/tex].
2. The graph of the function is a parabola:
The given function is a quadratic function of the form [tex]\( ax^2 + bx + c \)[/tex]. Since it is quadratic, its graph is indeed a parabola. Thus, this statement is true.
3. The graph of the function opens down:
The coefficient of [tex]\( x^2 \)[/tex] (the term [tex]\(\frac{1}{5}\)[/tex]) determines the direction in which the parabola opens.
Since [tex]\(\frac{1}{5}\)[/tex] is positive, the parabola opens upwards, not downwards. Therefore, this statement is false.
4. The graph contains the point [tex]\( (20, -8) \)[/tex]:
To check if the graph contains the point [tex]\((20, -8)\)[/tex]:
[tex]\[ f(20) = \frac{1}{5}(20)^2 - 5(20) + 12 \][/tex]
[tex]\[ f(20) = \frac{1}{5}(400) - 100 + 12 \][/tex]
[tex]\[ f(20) = 80 - 100 + 12 = -8 \][/tex]
Therefore, it is true that the point [tex]\((20, -8)\)[/tex] lies on the graph.
5. The graph contains the point [tex]\( (0, 0) \)[/tex]:
To check if the graph contains the point [tex]\((0, 0)\)[/tex]:
[tex]\[ f(0) = \frac{1}{5}(0)^2 - 5(0) + 12 \][/tex]
[tex]\[ f(0) = 12 \][/tex]
[tex]\( f(0) = 12 \)[/tex], not 0. So, the point [tex]\((0, 0)\)[/tex] does not lie on the graph. Therefore, this statement is false.
So, the three true statements about the function and its graph are:
- The value of [tex]\( f(-10) = 82 \)[/tex].
- The graph of the function is a parabola.
- The graph contains the point [tex]\( (20, -8) \)[/tex].
1. The value of [tex]\( f(-10) = 82 \)[/tex]:
To find [tex]\( f(-10) \)[/tex]:
[tex]\[ f(-10) = \frac{1}{5}(-10)^2 - 5(-10) + 12 \][/tex]
[tex]\[ f(-10) = \frac{1}{5}(100) + 50 + 12 \][/tex]
[tex]\[ f(-10) = 20 + 50 + 12 = 82 \][/tex]
Therefore, it is true that [tex]\( f(-10) = 82 \)[/tex].
2. The graph of the function is a parabola:
The given function is a quadratic function of the form [tex]\( ax^2 + bx + c \)[/tex]. Since it is quadratic, its graph is indeed a parabola. Thus, this statement is true.
3. The graph of the function opens down:
The coefficient of [tex]\( x^2 \)[/tex] (the term [tex]\(\frac{1}{5}\)[/tex]) determines the direction in which the parabola opens.
Since [tex]\(\frac{1}{5}\)[/tex] is positive, the parabola opens upwards, not downwards. Therefore, this statement is false.
4. The graph contains the point [tex]\( (20, -8) \)[/tex]:
To check if the graph contains the point [tex]\((20, -8)\)[/tex]:
[tex]\[ f(20) = \frac{1}{5}(20)^2 - 5(20) + 12 \][/tex]
[tex]\[ f(20) = \frac{1}{5}(400) - 100 + 12 \][/tex]
[tex]\[ f(20) = 80 - 100 + 12 = -8 \][/tex]
Therefore, it is true that the point [tex]\((20, -8)\)[/tex] lies on the graph.
5. The graph contains the point [tex]\( (0, 0) \)[/tex]:
To check if the graph contains the point [tex]\((0, 0)\)[/tex]:
[tex]\[ f(0) = \frac{1}{5}(0)^2 - 5(0) + 12 \][/tex]
[tex]\[ f(0) = 12 \][/tex]
[tex]\( f(0) = 12 \)[/tex], not 0. So, the point [tex]\((0, 0)\)[/tex] does not lie on the graph. Therefore, this statement is false.
So, the three true statements about the function and its graph are:
- The value of [tex]\( f(-10) = 82 \)[/tex].
- The graph of the function is a parabola.
- The graph contains the point [tex]\( (20, -8) \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.