Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which statement is true about the graph of the given equation:
[tex]\[ y + 4 = 4(x + 1) \][/tex]
we start by converting the equation into the slope-intercept form [tex]\( y = mx + b \)[/tex].
1. First, distribute the 4 on the right-hand side:
[tex]\[ y + 4 = 4x + 4 \][/tex]
2. Next, isolate [tex]\( y \)[/tex] by subtracting 4 from both sides:
[tex]\[ y = 4x + 4 - 4 \][/tex]
[tex]\[ y = 4x \][/tex]
Now, the equation is in the slope-intercept form [tex]\( y = 4x \)[/tex]. This means the line has a slope of 4 and a y-intercept of 0. We will verify which set of points lies on this line.
### Checking each option:
- Option A: (1, -4) and (0, 0)
- Plugging [tex]\( x = 1 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(1) = 4 \][/tex]
This does not match with the point (1, -4).
- Plugging [tex]\( x = 0 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(0) = 0 \][/tex]
This matches with the point (0, 0), but since both points must satisfy the equation, this option is incorrect.
- Option B: (1, 4) and (2, 8)
- Plugging [tex]\( x = 1 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(1) = 4 \][/tex]
This matches with the point (1, 4).
- Plugging [tex]\( x = 2 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(2) = 8 \][/tex]
This matches with the point (2, 8), so this option is correct.
- Option C: (-4, -1) and (-3, -3)
- Plugging [tex]\( x = -4 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(-4) = -16 \][/tex]
This does not match with the point (-4, -1).
- Plugging [tex]\( x = -3 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(-3) = -12 \][/tex]
This does not match with the point (-3, -3), so this option is incorrect.
- Option D: (4, 1) and (5, 5)
- Plugging [tex]\( x = 4 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(4) = 16 \][/tex]
This does not match with the point (4, 1).
- Plugging [tex]\( x = 5 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(5) = 20 \][/tex]
This does not match with the point (5, 5), so this option is incorrect.
Since the correct option must satisfy the equation [tex]\( y = 4x \)[/tex] for both points given, the true statement about the graph is:
B. The graph is a line that goes through the points (1,4) and (2,8).
[tex]\[ y + 4 = 4(x + 1) \][/tex]
we start by converting the equation into the slope-intercept form [tex]\( y = mx + b \)[/tex].
1. First, distribute the 4 on the right-hand side:
[tex]\[ y + 4 = 4x + 4 \][/tex]
2. Next, isolate [tex]\( y \)[/tex] by subtracting 4 from both sides:
[tex]\[ y = 4x + 4 - 4 \][/tex]
[tex]\[ y = 4x \][/tex]
Now, the equation is in the slope-intercept form [tex]\( y = 4x \)[/tex]. This means the line has a slope of 4 and a y-intercept of 0. We will verify which set of points lies on this line.
### Checking each option:
- Option A: (1, -4) and (0, 0)
- Plugging [tex]\( x = 1 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(1) = 4 \][/tex]
This does not match with the point (1, -4).
- Plugging [tex]\( x = 0 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(0) = 0 \][/tex]
This matches with the point (0, 0), but since both points must satisfy the equation, this option is incorrect.
- Option B: (1, 4) and (2, 8)
- Plugging [tex]\( x = 1 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(1) = 4 \][/tex]
This matches with the point (1, 4).
- Plugging [tex]\( x = 2 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(2) = 8 \][/tex]
This matches with the point (2, 8), so this option is correct.
- Option C: (-4, -1) and (-3, -3)
- Plugging [tex]\( x = -4 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(-4) = -16 \][/tex]
This does not match with the point (-4, -1).
- Plugging [tex]\( x = -3 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(-3) = -12 \][/tex]
This does not match with the point (-3, -3), so this option is incorrect.
- Option D: (4, 1) and (5, 5)
- Plugging [tex]\( x = 4 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(4) = 16 \][/tex]
This does not match with the point (4, 1).
- Plugging [tex]\( x = 5 \)[/tex] into [tex]\( y = 4x \)[/tex]:
[tex]\[ y = 4(5) = 20 \][/tex]
This does not match with the point (5, 5), so this option is incorrect.
Since the correct option must satisfy the equation [tex]\( y = 4x \)[/tex] for both points given, the true statement about the graph is:
B. The graph is a line that goes through the points (1,4) and (2,8).
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.