Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find [tex]\(\csc(\theta)\)[/tex] given [tex]\(\cot(\theta) = 4\)[/tex] and that the terminal side of [tex]\(\theta\)[/tex] lies in quadrant III, follow these steps:
1. Express [tex]\(\cot(\theta)\)[/tex]:
[tex]\(\cot(\theta) = \frac{\text{adjacent}}{\text{opposite}}\)[/tex].
Given [tex]\(\cot(\theta) = 4\)[/tex], we can write this ratio as:
[tex]\[ \cot(\theta) = \frac{4}{1} \][/tex]
This means the adjacent side is 4 and the opposite side is 1.
2. Adjust for quadrant III:
In quadrant III, both the x (adjacent) and y (opposite) coordinates are negative:
[tex]\[ \text{adjacent} = -4, \quad \text{opposite} = -1 \][/tex]
3. Find the hypotenuse:
Use the Pythagorean theorem to find the hypotenuse [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{(\text{adjacent})^2 + (\text{opposite})^2} = \sqrt{(-4)^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} \][/tex]
4. Calculate [tex]\(\csc(\theta)\)[/tex]:
[tex]\(\csc(\theta)\)[/tex] is the reciprocal of [tex]\(\sin(\theta)\)[/tex], and [tex]\(\sin(\theta)\)[/tex] is the ratio of the opposite side to the hypotenuse:
[tex]\[ \sin(\theta) = \frac{-1}{\sqrt{17}} \][/tex]
Therefore,
[tex]\[ \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{\sqrt{17}}{-1} = -\sqrt{17} \][/tex]
So the exact, fully simplified value of [tex]\(\csc(\theta)\)[/tex] is:
[tex]\[ \csc(\theta) = -\sqrt{17} \][/tex]
1. Express [tex]\(\cot(\theta)\)[/tex]:
[tex]\(\cot(\theta) = \frac{\text{adjacent}}{\text{opposite}}\)[/tex].
Given [tex]\(\cot(\theta) = 4\)[/tex], we can write this ratio as:
[tex]\[ \cot(\theta) = \frac{4}{1} \][/tex]
This means the adjacent side is 4 and the opposite side is 1.
2. Adjust for quadrant III:
In quadrant III, both the x (adjacent) and y (opposite) coordinates are negative:
[tex]\[ \text{adjacent} = -4, \quad \text{opposite} = -1 \][/tex]
3. Find the hypotenuse:
Use the Pythagorean theorem to find the hypotenuse [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{(\text{adjacent})^2 + (\text{opposite})^2} = \sqrt{(-4)^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} \][/tex]
4. Calculate [tex]\(\csc(\theta)\)[/tex]:
[tex]\(\csc(\theta)\)[/tex] is the reciprocal of [tex]\(\sin(\theta)\)[/tex], and [tex]\(\sin(\theta)\)[/tex] is the ratio of the opposite side to the hypotenuse:
[tex]\[ \sin(\theta) = \frac{-1}{\sqrt{17}} \][/tex]
Therefore,
[tex]\[ \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{\sqrt{17}}{-1} = -\sqrt{17} \][/tex]
So the exact, fully simplified value of [tex]\(\csc(\theta)\)[/tex] is:
[tex]\[ \csc(\theta) = -\sqrt{17} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.