Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the equation of a new function when the reciprocal parent function [tex]\( F(x) = \frac{1}{x} \)[/tex] is shifted down by 2 units, we need to understand how vertical shifts affect a function.
1. Vertical Shifts: A vertical shift of a function involves adding or subtracting a constant from the function. Specifically:
- Shifting a function up by [tex]\( k \)[/tex] units means adding [tex]\( k \)[/tex] to the function: [tex]\( F(x) + k \)[/tex].
- Shifting a function down by [tex]\( k \)[/tex] units means subtracting [tex]\( k \)[/tex] from the function: [tex]\( F(x) - k \)[/tex].
2. Applying the Shift: The given question asks us to shift the reciprocal function [tex]\( F(x) = \frac{1}{x} \)[/tex] down by 2 units. That translates to subtracting 2 from [tex]\( F(x) \)[/tex]. So, we do:
[tex]\[ G(x) = \frac{1}{x} - 2 \][/tex]
3. Verifying the Options: Now let's examine the given options to identify the correct new function after shifting:
- Option A: [tex]\( G(x) = \frac{1}{x-2} \)[/tex] (This represents a horizontal shift, not a vertical shift, so this is incorrect.)
- Option B: [tex]\( G(x) = \frac{1}{x} + 2 \)[/tex] (This represents a vertical shift up by 2 units, not down, so this is incorrect.)
- Option C: [tex]\( G(x) = \frac{1}{x} - 2 \)[/tex] (This correctly represents a vertical shift down by 2 units, so this is correct.)
- Option D: [tex]\( G(x) = \frac{2}{x} \)[/tex] (This changes the slope of the function and does not represent a vertical shift, so it is incorrect.)
Thus, the equation of the new function after shifting [tex]\( F(x) = \frac{1}{x} \)[/tex] down by 2 units is:
[tex]\[ G(x) = \frac{1}{x} - 2 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
1. Vertical Shifts: A vertical shift of a function involves adding or subtracting a constant from the function. Specifically:
- Shifting a function up by [tex]\( k \)[/tex] units means adding [tex]\( k \)[/tex] to the function: [tex]\( F(x) + k \)[/tex].
- Shifting a function down by [tex]\( k \)[/tex] units means subtracting [tex]\( k \)[/tex] from the function: [tex]\( F(x) - k \)[/tex].
2. Applying the Shift: The given question asks us to shift the reciprocal function [tex]\( F(x) = \frac{1}{x} \)[/tex] down by 2 units. That translates to subtracting 2 from [tex]\( F(x) \)[/tex]. So, we do:
[tex]\[ G(x) = \frac{1}{x} - 2 \][/tex]
3. Verifying the Options: Now let's examine the given options to identify the correct new function after shifting:
- Option A: [tex]\( G(x) = \frac{1}{x-2} \)[/tex] (This represents a horizontal shift, not a vertical shift, so this is incorrect.)
- Option B: [tex]\( G(x) = \frac{1}{x} + 2 \)[/tex] (This represents a vertical shift up by 2 units, not down, so this is incorrect.)
- Option C: [tex]\( G(x) = \frac{1}{x} - 2 \)[/tex] (This correctly represents a vertical shift down by 2 units, so this is correct.)
- Option D: [tex]\( G(x) = \frac{2}{x} \)[/tex] (This changes the slope of the function and does not represent a vertical shift, so it is incorrect.)
Thus, the equation of the new function after shifting [tex]\( F(x) = \frac{1}{x} \)[/tex] down by 2 units is:
[tex]\[ G(x) = \frac{1}{x} - 2 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.