Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find [tex]\(\csc(\theta)\)[/tex] given that [tex]\(\cos(\theta) = -\frac{13}{15}\)[/tex] and the terminal side of [tex]\(\theta\)[/tex] lies in quadrant III, we will use the Pythagorean identity. Let's go through the steps in detail.
1. Identify the known cosine value and quadrant:
- Given: [tex]\(\cos(\theta) = -\frac{13}{15}\)[/tex]
- The terminal side of [tex]\(\theta\)[/tex] is in quadrant III.
2. Pythagorean identity:
- We know that [tex]\(\cos^2(\theta) + \sin^2(\theta) = 1\)[/tex].
3. Calculate [tex]\(\sin^2(\theta)\)[/tex]:
- [tex]\(\cos(\theta) = -\frac{13}{15}\)[/tex], so [tex]\(\cos^2(\theta) = \left(-\frac{13}{15}\right)^2 = \frac{169}{225}\)[/tex].
- Using the Pythagorean identity:
[tex]\[ \sin^2(\theta) = 1 - \cos^2(\theta) = 1 - \frac{169}{225} = \frac{225}{225} - \frac{169}{225} = \frac{56}{225}. \][/tex]
4. Determine [tex]\(\sin(\theta)\)[/tex]:
- Since the terminal side of [tex]\(\theta\)[/tex] lies in quadrant III, both sine and cosine are negative in this quadrant.
- Thus, [tex]\(\sin(\theta) = -\sqrt{\sin^2(\theta)} = -\sqrt{\frac{56}{225}} = -\frac{\sqrt{56}}{15}\)[/tex].
- Simplifying the square root, we get [tex]\(\sqrt{56} = \sqrt{4 \cdot 14} = 2\sqrt{14}\)[/tex], so [tex]\(\sin(\theta) = -\frac{2\sqrt{14}}{15}\)[/tex].
5. Calculate [tex]\(\csc(\theta)\)[/tex]:
- [tex]\(\csc(\theta) = \frac{1}{\sin(\theta)} = \frac{1}{-\frac{2\sqrt{14}}{15}} = -\frac{15}{2\sqrt{14}}\)[/tex].
- Rationalizing the denominator, we multiply the numerator and the denominator by [tex]\(\sqrt{14}\)[/tex]:
[tex]\[ \csc(\theta) = -\frac{15 \cdot \sqrt{14}}{2 \cdot 14} = -\frac{15 \sqrt{14}}{28}. \][/tex]
So, [tex]\(\csc(\theta) = -\frac{15 \sqrt{14}}{28}\)[/tex].
1. Identify the known cosine value and quadrant:
- Given: [tex]\(\cos(\theta) = -\frac{13}{15}\)[/tex]
- The terminal side of [tex]\(\theta\)[/tex] is in quadrant III.
2. Pythagorean identity:
- We know that [tex]\(\cos^2(\theta) + \sin^2(\theta) = 1\)[/tex].
3. Calculate [tex]\(\sin^2(\theta)\)[/tex]:
- [tex]\(\cos(\theta) = -\frac{13}{15}\)[/tex], so [tex]\(\cos^2(\theta) = \left(-\frac{13}{15}\right)^2 = \frac{169}{225}\)[/tex].
- Using the Pythagorean identity:
[tex]\[ \sin^2(\theta) = 1 - \cos^2(\theta) = 1 - \frac{169}{225} = \frac{225}{225} - \frac{169}{225} = \frac{56}{225}. \][/tex]
4. Determine [tex]\(\sin(\theta)\)[/tex]:
- Since the terminal side of [tex]\(\theta\)[/tex] lies in quadrant III, both sine and cosine are negative in this quadrant.
- Thus, [tex]\(\sin(\theta) = -\sqrt{\sin^2(\theta)} = -\sqrt{\frac{56}{225}} = -\frac{\sqrt{56}}{15}\)[/tex].
- Simplifying the square root, we get [tex]\(\sqrt{56} = \sqrt{4 \cdot 14} = 2\sqrt{14}\)[/tex], so [tex]\(\sin(\theta) = -\frac{2\sqrt{14}}{15}\)[/tex].
5. Calculate [tex]\(\csc(\theta)\)[/tex]:
- [tex]\(\csc(\theta) = \frac{1}{\sin(\theta)} = \frac{1}{-\frac{2\sqrt{14}}{15}} = -\frac{15}{2\sqrt{14}}\)[/tex].
- Rationalizing the denominator, we multiply the numerator and the denominator by [tex]\(\sqrt{14}\)[/tex]:
[tex]\[ \csc(\theta) = -\frac{15 \cdot \sqrt{14}}{2 \cdot 14} = -\frac{15 \sqrt{14}}{28}. \][/tex]
So, [tex]\(\csc(\theta) = -\frac{15 \sqrt{14}}{28}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.