Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To choose the quadratic equation that models the situation, we need to start with the given function that describes the height [tex]\( h(t) \)[/tex] at any time [tex]\( t \)[/tex]:
[tex]\[ h(t) = -4.9t^2 + h_0 \][/tex]
Our goal is to determine the initial height [tex]\( h_0 \)[/tex] using the data provided in the table. The data points given are:
- At [tex]\( t = 1 \)[/tex] second, [tex]\( h = 55.1 \)[/tex] meters
- At [tex]\( t = 2 \)[/tex] seconds, [tex]\( h = 40.4 \)[/tex] meters
- At [tex]\( t = 3 \)[/tex] seconds, [tex]\( h = 15.9 \)[/tex] meters
Let's use these data points to find [tex]\( h_0 \)[/tex].
### Step-by-Step Solution
1. Substitute the first data point into the equation:
[tex]\[ h(1) = -4.9(1)^2 + h_0 = 55.1 \][/tex]
[tex]\[ -4.9 + h_0 = 55.1 \][/tex]
[tex]\[ h_0 = 55.1 + 4.9 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
2. Substitute the second data point into the equation:
[tex]\[ h(2) = -4.9(2)^2 + h_0 = 40.4 \][/tex]
[tex]\[ -4.9 \cdot 4 + h_0 = 40.4 \][/tex]
[tex]\[ -19.6 + h_0 = 40.4 \][/tex]
[tex]\[ h_0 = 40.4 + 19.6 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
3. Substitute the third data point into the equation:
[tex]\[ h(3) = -4.9(3)^2 + h_0 = 15.9 \][/tex]
[tex]\[ -4.9 \cdot 9 + h_0 = 15.9 \][/tex]
[tex]\[ -44.1 + h_0 = 15.9 \][/tex]
[tex]\[ h_0 = 15.9 + 44.1 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
### Conclusion
From all three data points, we consistently find that the initial height [tex]\( h_0 \)[/tex] is [tex]\( 60.0 \)[/tex] meters. Therefore, the quadratic equation that models the situation is:
[tex]\[ h(t) = -4.9t^2 + 60.0 \][/tex]
[tex]\[ h(t) = -4.9t^2 + h_0 \][/tex]
Our goal is to determine the initial height [tex]\( h_0 \)[/tex] using the data provided in the table. The data points given are:
- At [tex]\( t = 1 \)[/tex] second, [tex]\( h = 55.1 \)[/tex] meters
- At [tex]\( t = 2 \)[/tex] seconds, [tex]\( h = 40.4 \)[/tex] meters
- At [tex]\( t = 3 \)[/tex] seconds, [tex]\( h = 15.9 \)[/tex] meters
Let's use these data points to find [tex]\( h_0 \)[/tex].
### Step-by-Step Solution
1. Substitute the first data point into the equation:
[tex]\[ h(1) = -4.9(1)^2 + h_0 = 55.1 \][/tex]
[tex]\[ -4.9 + h_0 = 55.1 \][/tex]
[tex]\[ h_0 = 55.1 + 4.9 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
2. Substitute the second data point into the equation:
[tex]\[ h(2) = -4.9(2)^2 + h_0 = 40.4 \][/tex]
[tex]\[ -4.9 \cdot 4 + h_0 = 40.4 \][/tex]
[tex]\[ -19.6 + h_0 = 40.4 \][/tex]
[tex]\[ h_0 = 40.4 + 19.6 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
3. Substitute the third data point into the equation:
[tex]\[ h(3) = -4.9(3)^2 + h_0 = 15.9 \][/tex]
[tex]\[ -4.9 \cdot 9 + h_0 = 15.9 \][/tex]
[tex]\[ -44.1 + h_0 = 15.9 \][/tex]
[tex]\[ h_0 = 15.9 + 44.1 \][/tex]
[tex]\[ h_0 = 60.0 \][/tex]
### Conclusion
From all three data points, we consistently find that the initial height [tex]\( h_0 \)[/tex] is [tex]\( 60.0 \)[/tex] meters. Therefore, the quadratic equation that models the situation is:
[tex]\[ h(t) = -4.9t^2 + 60.0 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.