Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the partial pressure of the third gas, helium, we can use the provided equation for the total pressure of a gas mixture:
[tex]\[ P_{\text{total}} = P_{\text{Neon}} + P_{\text{Argon}} + P_{\text{Helium}} \][/tex]
We know the following values:
- The total pressure of the gas mixture, [tex]\( P_{\text{total}} \)[/tex], is 1.25 atm.
- The partial pressure of neon, [tex]\( P_{\text{Neon}} \)[/tex], is 0.68 atm.
- The partial pressure of argon, [tex]\( P_{\text{Argon}} \)[/tex], is 0.35 atm.
We need to find the partial pressure of helium, [tex]\( P_{\text{Helium}} \)[/tex]. Rearranging the equation to solve for [tex]\( P_{\text{Helium}} \)[/tex], we get:
[tex]\[ P_{\text{Helium}} = P_{\text{total}} - P_{\text{Neon}} - P_{\text{Argon}} \][/tex]
Substitute the known values into the equation:
[tex]\[ P_{\text{Helium}} = 1.25 \, \text{atm} - 0.68 \, \text{atm} - 0.35 \, \text{atm} \][/tex]
Perform the subtraction step-by-step:
[tex]\[ P_{\text{Helium}} = 1.25 \, \text{atm} - (0.68 \, \text{atm} + 0.35 \, \text{atm}) \][/tex]
[tex]\[ P_{\text{Helium}} = 1.25 \, \text{atm} - 1.03 \, \text{atm} \][/tex]
[tex]\[ P_{\text{Helium}} = 0.22 \, \text{atm} \][/tex]
Therefore, the partial pressure of helium is:
[tex]\[ 0.22 \, \text{atm} \][/tex]
So the correct answer is:
[tex]\[ 0.22 \, \text{atm} \][/tex]
[tex]\[ P_{\text{total}} = P_{\text{Neon}} + P_{\text{Argon}} + P_{\text{Helium}} \][/tex]
We know the following values:
- The total pressure of the gas mixture, [tex]\( P_{\text{total}} \)[/tex], is 1.25 atm.
- The partial pressure of neon, [tex]\( P_{\text{Neon}} \)[/tex], is 0.68 atm.
- The partial pressure of argon, [tex]\( P_{\text{Argon}} \)[/tex], is 0.35 atm.
We need to find the partial pressure of helium, [tex]\( P_{\text{Helium}} \)[/tex]. Rearranging the equation to solve for [tex]\( P_{\text{Helium}} \)[/tex], we get:
[tex]\[ P_{\text{Helium}} = P_{\text{total}} - P_{\text{Neon}} - P_{\text{Argon}} \][/tex]
Substitute the known values into the equation:
[tex]\[ P_{\text{Helium}} = 1.25 \, \text{atm} - 0.68 \, \text{atm} - 0.35 \, \text{atm} \][/tex]
Perform the subtraction step-by-step:
[tex]\[ P_{\text{Helium}} = 1.25 \, \text{atm} - (0.68 \, \text{atm} + 0.35 \, \text{atm}) \][/tex]
[tex]\[ P_{\text{Helium}} = 1.25 \, \text{atm} - 1.03 \, \text{atm} \][/tex]
[tex]\[ P_{\text{Helium}} = 0.22 \, \text{atm} \][/tex]
Therefore, the partial pressure of helium is:
[tex]\[ 0.22 \, \text{atm} \][/tex]
So the correct answer is:
[tex]\[ 0.22 \, \text{atm} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.