Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To compare the slopes of the two pieces of climbing equipment, we need to calculate the slope for each and compare them.
Step-by-Step Solution:
1. Calculate the Slope of the Playground Equipment:
The slope is calculated as the ratio of the height to the horizontal extension.
[tex]\[ \text{slope}_{\text{playground}} = \frac{\text{height}_{\text{playground}}}{\text{horizontal}_{\text{playground}}} = \frac{6 \text{ feet}}{4 \text{ feet}} = \frac{6}{4} = 1.5 \][/tex]
2. Calculate the Slope of the Gym Equipment:
Similarly, calculate the slope for the gym equipment.
[tex]\[ \text{slope}_{\text{gym}} = \frac{\text{height}_{\text{gym}}}{\text{horizontal}_{\text{gym}}} = \frac{10 \text{ feet}}{6 \text{ feet}} = \frac{10}{6} = \frac{5}{3} \approx 1.67 \][/tex]
3. Compare the Slopes:
Now, we compare the two calculated slopes:
[tex]\[ \text{slope}_{\text{playground}} = 1.5 \][/tex]
[tex]\[ \text{slope}_{\text{gym}} = \frac{5}{3} \approx 1.67 \][/tex]
Clearly, [tex]\( 1.67 > 1.5 \)[/tex]. Thus, the slope of the climbing equipment at the gym is greater than the slope of the climbing equipment at the playground.
4. Verify the Correct Statement:
Based on the comparison, the correct statement is:
[tex]\[ \text{Because } \frac{5}{3} > \frac{3}{2}, \text{ the slope of the climbing equipment at the gym is greater.} \][/tex]
Therefore, the correct answer is:
Because [tex]\(\frac{5}{3} > \frac{3}{2}\)[/tex], the slope of the climbing equipment at the gym is greater.
Step-by-Step Solution:
1. Calculate the Slope of the Playground Equipment:
The slope is calculated as the ratio of the height to the horizontal extension.
[tex]\[ \text{slope}_{\text{playground}} = \frac{\text{height}_{\text{playground}}}{\text{horizontal}_{\text{playground}}} = \frac{6 \text{ feet}}{4 \text{ feet}} = \frac{6}{4} = 1.5 \][/tex]
2. Calculate the Slope of the Gym Equipment:
Similarly, calculate the slope for the gym equipment.
[tex]\[ \text{slope}_{\text{gym}} = \frac{\text{height}_{\text{gym}}}{\text{horizontal}_{\text{gym}}} = \frac{10 \text{ feet}}{6 \text{ feet}} = \frac{10}{6} = \frac{5}{3} \approx 1.67 \][/tex]
3. Compare the Slopes:
Now, we compare the two calculated slopes:
[tex]\[ \text{slope}_{\text{playground}} = 1.5 \][/tex]
[tex]\[ \text{slope}_{\text{gym}} = \frac{5}{3} \approx 1.67 \][/tex]
Clearly, [tex]\( 1.67 > 1.5 \)[/tex]. Thus, the slope of the climbing equipment at the gym is greater than the slope of the climbing equipment at the playground.
4. Verify the Correct Statement:
Based on the comparison, the correct statement is:
[tex]\[ \text{Because } \frac{5}{3} > \frac{3}{2}, \text{ the slope of the climbing equipment at the gym is greater.} \][/tex]
Therefore, the correct answer is:
Because [tex]\(\frac{5}{3} > \frac{3}{2}\)[/tex], the slope of the climbing equipment at the gym is greater.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.