Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which functions have a y-intercept of [tex]\((0, 5)\)[/tex], we need to evaluate each function at [tex]\(x = 0\)[/tex]. The y-intercept of a function [tex]\(f(x)\)[/tex] is found by computing [tex]\(f(0)\)[/tex].
Let's evaluate each function step-by-step:
1. [tex]\(f(x) = -3(b)^x - 5\)[/tex]
[tex]\[ f(0) = -3(b)^0 - 5 = -3 \cdot 1 - 5 = -3 - 5 = -8 \][/tex]
The y-intercept is [tex]\((0, -8)\)[/tex].
2. [tex]\(f(x) = -5(b)^x + 10\)[/tex]
[tex]\[ f(0) = -5(b)^0 + 10 = -5 \cdot 1 + 10 = -5 + 10 = 5 \][/tex]
The y-intercept is [tex]\((0, 5)\)[/tex].
3. [tex]\(f(x) = 5(b)^x - 1\)[/tex]
[tex]\[ f(0) = 5(b)^0 - 1 = 5 \cdot 1 - 1 = 5 - 1 = 4 \][/tex]
The y-intercept is [tex]\((0, 4)\)[/tex].
4. [tex]\(f(x) = 7(b)^x - 2\)[/tex]
[tex]\[ f(0) = 7(b)^0 - 2 = 7 \cdot 1 - 2 = 7 - 2 = 5 \][/tex]
The y-intercept is [tex]\((0, 5)\)[/tex].
5. [tex]\(f(x) = 2(b)^x + 5\)[/tex]
[tex]\[ f(0) = 2(b)^0 + 5 = 2 \cdot 1 + 5 = 2 + 5 = 7 \][/tex]
The y-intercept is [tex]\((0, 7)\)[/tex].
So, the functions that have a y-intercept of [tex]\((0, 5)\)[/tex] are:
- [tex]\(f(x) = -5(b)^x + 10\)[/tex]
- [tex]\(f(x) = 7(b)^x - 2\)[/tex]
Let's evaluate each function step-by-step:
1. [tex]\(f(x) = -3(b)^x - 5\)[/tex]
[tex]\[ f(0) = -3(b)^0 - 5 = -3 \cdot 1 - 5 = -3 - 5 = -8 \][/tex]
The y-intercept is [tex]\((0, -8)\)[/tex].
2. [tex]\(f(x) = -5(b)^x + 10\)[/tex]
[tex]\[ f(0) = -5(b)^0 + 10 = -5 \cdot 1 + 10 = -5 + 10 = 5 \][/tex]
The y-intercept is [tex]\((0, 5)\)[/tex].
3. [tex]\(f(x) = 5(b)^x - 1\)[/tex]
[tex]\[ f(0) = 5(b)^0 - 1 = 5 \cdot 1 - 1 = 5 - 1 = 4 \][/tex]
The y-intercept is [tex]\((0, 4)\)[/tex].
4. [tex]\(f(x) = 7(b)^x - 2\)[/tex]
[tex]\[ f(0) = 7(b)^0 - 2 = 7 \cdot 1 - 2 = 7 - 2 = 5 \][/tex]
The y-intercept is [tex]\((0, 5)\)[/tex].
5. [tex]\(f(x) = 2(b)^x + 5\)[/tex]
[tex]\[ f(0) = 2(b)^0 + 5 = 2 \cdot 1 + 5 = 2 + 5 = 7 \][/tex]
The y-intercept is [tex]\((0, 7)\)[/tex].
So, the functions that have a y-intercept of [tex]\((0, 5)\)[/tex] are:
- [tex]\(f(x) = -5(b)^x + 10\)[/tex]
- [tex]\(f(x) = 7(b)^x - 2\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.