Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which functions have a y-intercept of [tex]\((0, 5)\)[/tex], we need to evaluate each function at [tex]\(x = 0\)[/tex]. The y-intercept of a function [tex]\(f(x)\)[/tex] is found by computing [tex]\(f(0)\)[/tex].
Let's evaluate each function step-by-step:
1. [tex]\(f(x) = -3(b)^x - 5\)[/tex]
[tex]\[ f(0) = -3(b)^0 - 5 = -3 \cdot 1 - 5 = -3 - 5 = -8 \][/tex]
The y-intercept is [tex]\((0, -8)\)[/tex].
2. [tex]\(f(x) = -5(b)^x + 10\)[/tex]
[tex]\[ f(0) = -5(b)^0 + 10 = -5 \cdot 1 + 10 = -5 + 10 = 5 \][/tex]
The y-intercept is [tex]\((0, 5)\)[/tex].
3. [tex]\(f(x) = 5(b)^x - 1\)[/tex]
[tex]\[ f(0) = 5(b)^0 - 1 = 5 \cdot 1 - 1 = 5 - 1 = 4 \][/tex]
The y-intercept is [tex]\((0, 4)\)[/tex].
4. [tex]\(f(x) = 7(b)^x - 2\)[/tex]
[tex]\[ f(0) = 7(b)^0 - 2 = 7 \cdot 1 - 2 = 7 - 2 = 5 \][/tex]
The y-intercept is [tex]\((0, 5)\)[/tex].
5. [tex]\(f(x) = 2(b)^x + 5\)[/tex]
[tex]\[ f(0) = 2(b)^0 + 5 = 2 \cdot 1 + 5 = 2 + 5 = 7 \][/tex]
The y-intercept is [tex]\((0, 7)\)[/tex].
So, the functions that have a y-intercept of [tex]\((0, 5)\)[/tex] are:
- [tex]\(f(x) = -5(b)^x + 10\)[/tex]
- [tex]\(f(x) = 7(b)^x - 2\)[/tex]
Let's evaluate each function step-by-step:
1. [tex]\(f(x) = -3(b)^x - 5\)[/tex]
[tex]\[ f(0) = -3(b)^0 - 5 = -3 \cdot 1 - 5 = -3 - 5 = -8 \][/tex]
The y-intercept is [tex]\((0, -8)\)[/tex].
2. [tex]\(f(x) = -5(b)^x + 10\)[/tex]
[tex]\[ f(0) = -5(b)^0 + 10 = -5 \cdot 1 + 10 = -5 + 10 = 5 \][/tex]
The y-intercept is [tex]\((0, 5)\)[/tex].
3. [tex]\(f(x) = 5(b)^x - 1\)[/tex]
[tex]\[ f(0) = 5(b)^0 - 1 = 5 \cdot 1 - 1 = 5 - 1 = 4 \][/tex]
The y-intercept is [tex]\((0, 4)\)[/tex].
4. [tex]\(f(x) = 7(b)^x - 2\)[/tex]
[tex]\[ f(0) = 7(b)^0 - 2 = 7 \cdot 1 - 2 = 7 - 2 = 5 \][/tex]
The y-intercept is [tex]\((0, 5)\)[/tex].
5. [tex]\(f(x) = 2(b)^x + 5\)[/tex]
[tex]\[ f(0) = 2(b)^0 + 5 = 2 \cdot 1 + 5 = 2 + 5 = 7 \][/tex]
The y-intercept is [tex]\((0, 7)\)[/tex].
So, the functions that have a y-intercept of [tex]\((0, 5)\)[/tex] are:
- [tex]\(f(x) = -5(b)^x + 10\)[/tex]
- [tex]\(f(x) = 7(b)^x - 2\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.