Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the correct formula for cobalt (III) oxide, we need to understand the charges of the cobalt and oxygen ions.
1. Oxidation State for Cobalt (III):
- The "III" in cobalt (III) indicates that cobalt has an oxidation state of +3. Therefore, a cobalt (III) ion is [tex]\( Co^{3+} \)[/tex].
2. Charge of Oxygen Ion:
- Oxygen typically has an oxidation state of -2 in most of its compounds. Thus, an oxygen ion is [tex]\( O^{2-} \)[/tex].
3. Balancing the Charges:
- To form a neutral compound, the total positive charge must balance the total negative charge. We need to find the ratio of cobalt (III) ions ([tex]\( Co^{3+} \)[/tex]) to oxide ions ([tex]\( O^{2-} \)[/tex]) that results in no net charge.
- The common multiple of 3 (from [tex]\( Co^{3+} \)[/tex]) and 2 (from [tex]\( O^{2-} \)[/tex]) is 6. Therefore:
- Two [tex]\( Co^{3+} \)[/tex] ions will provide a total of [tex]\( 2 \times (+3) = +6 \)[/tex] positive charges.
- Three [tex]\( O^{2-} \)[/tex] ions will provide a total of [tex]\( 3 \times (-2) = -6 \)[/tex] negative charges.
4. Writing the Formula:
- Combine the [tex]\( Co^{3+} \)[/tex] and [tex]\( O^{2-} \)[/tex] ions in the ratio determined above to get a neutral compound. For every 2 cobalt (III) ions, you need 3 oxide ions.
- Therefore, the formula for cobalt (III) oxide is [tex]\( Co_2O_3 \)[/tex].
So, the correct answer is:
[tex]\[ Co_2O_3 \][/tex]
1. Oxidation State for Cobalt (III):
- The "III" in cobalt (III) indicates that cobalt has an oxidation state of +3. Therefore, a cobalt (III) ion is [tex]\( Co^{3+} \)[/tex].
2. Charge of Oxygen Ion:
- Oxygen typically has an oxidation state of -2 in most of its compounds. Thus, an oxygen ion is [tex]\( O^{2-} \)[/tex].
3. Balancing the Charges:
- To form a neutral compound, the total positive charge must balance the total negative charge. We need to find the ratio of cobalt (III) ions ([tex]\( Co^{3+} \)[/tex]) to oxide ions ([tex]\( O^{2-} \)[/tex]) that results in no net charge.
- The common multiple of 3 (from [tex]\( Co^{3+} \)[/tex]) and 2 (from [tex]\( O^{2-} \)[/tex]) is 6. Therefore:
- Two [tex]\( Co^{3+} \)[/tex] ions will provide a total of [tex]\( 2 \times (+3) = +6 \)[/tex] positive charges.
- Three [tex]\( O^{2-} \)[/tex] ions will provide a total of [tex]\( 3 \times (-2) = -6 \)[/tex] negative charges.
4. Writing the Formula:
- Combine the [tex]\( Co^{3+} \)[/tex] and [tex]\( O^{2-} \)[/tex] ions in the ratio determined above to get a neutral compound. For every 2 cobalt (III) ions, you need 3 oxide ions.
- Therefore, the formula for cobalt (III) oxide is [tex]\( Co_2O_3 \)[/tex].
So, the correct answer is:
[tex]\[ Co_2O_3 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.