Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation of a line that is perpendicular to a given line and passes through a specific point, follow these steps:
1. Identify the slope of the given line:
The given equation of the line is [tex]\( y = -\frac{1}{3}x - \frac{5}{3} \)[/tex]. The slope ([tex]\(m\)[/tex]) of this line is [tex]\(-\frac{1}{3}\)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line that is perpendicular to another line is the negative reciprocal of the original line's slope. The negative reciprocal of [tex]\(-\frac{1}{3}\)[/tex] is [tex]\(3\)[/tex]. So, the slope of the perpendicular line is [tex]\(3\)[/tex].
3. Use the point-slope form of the equation:
The point-slope form of a line equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\(m\)[/tex] is the slope of the line, and [tex]\((x_1, y_1)\)[/tex] is a point through which the line passes. We are given the point [tex]\((2, -1)\)[/tex].
4. Plug in the given point and the slope:
Substitute [tex]\(m = 3\)[/tex], [tex]\(x_1 = 2\)[/tex], and [tex]\(y_1 = -1\)[/tex] into the point-slope form equation:
[tex]\[ y - (-1) = 3(x - 2) \][/tex]
This simplifies to:
[tex]\[ y + 1 = 3(x - 2) \][/tex]
5. Simplify the equation to slope-intercept form:
Distribute the [tex]\(3\)[/tex] on the right-hand side:
[tex]\[ y + 1 = 3x - 6 \][/tex]
Subtract [tex]\(1\)[/tex] from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = 3x - 7 \][/tex]
Thus, the equation of the line that is perpendicular to [tex]\(y = -\frac{1}{3}x - \frac{5}{3}\)[/tex] and passes through the point [tex]\((2, -1)\)[/tex] is:
[tex]\[ y = 3x - 7 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = 3x - 7} \][/tex]
1. Identify the slope of the given line:
The given equation of the line is [tex]\( y = -\frac{1}{3}x - \frac{5}{3} \)[/tex]. The slope ([tex]\(m\)[/tex]) of this line is [tex]\(-\frac{1}{3}\)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line that is perpendicular to another line is the negative reciprocal of the original line's slope. The negative reciprocal of [tex]\(-\frac{1}{3}\)[/tex] is [tex]\(3\)[/tex]. So, the slope of the perpendicular line is [tex]\(3\)[/tex].
3. Use the point-slope form of the equation:
The point-slope form of a line equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\(m\)[/tex] is the slope of the line, and [tex]\((x_1, y_1)\)[/tex] is a point through which the line passes. We are given the point [tex]\((2, -1)\)[/tex].
4. Plug in the given point and the slope:
Substitute [tex]\(m = 3\)[/tex], [tex]\(x_1 = 2\)[/tex], and [tex]\(y_1 = -1\)[/tex] into the point-slope form equation:
[tex]\[ y - (-1) = 3(x - 2) \][/tex]
This simplifies to:
[tex]\[ y + 1 = 3(x - 2) \][/tex]
5. Simplify the equation to slope-intercept form:
Distribute the [tex]\(3\)[/tex] on the right-hand side:
[tex]\[ y + 1 = 3x - 6 \][/tex]
Subtract [tex]\(1\)[/tex] from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = 3x - 7 \][/tex]
Thus, the equation of the line that is perpendicular to [tex]\(y = -\frac{1}{3}x - \frac{5}{3}\)[/tex] and passes through the point [tex]\((2, -1)\)[/tex] is:
[tex]\[ y = 3x - 7 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = 3x - 7} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.