Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the equation of a line parallel to a given line with an x-intercept of 4, follow these steps:
1. Identify the Slope ([tex]\( m \)[/tex]) of the Given Line:
- Let the equation of the given line be in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
- Since we need a parallel line, the slope ([tex]\( m \)[/tex]) of our new line must be the same as the given line.
2. Find the X-Intercept and Determine the Y-Intercept ([tex]\( c \)[/tex]) of the New Line:
- By definition, the x-intercept is the point where the line crosses the x-axis ([tex]\( y = 0 \)[/tex]), so for the x-intercept of 4, the point is [tex]\( (4, 0) \)[/tex].
- Substitute [tex]\( x = 4 \)[/tex] and [tex]\( y = 0 \)[/tex] into the line equation [tex]\( y = mx + c \)[/tex]:
[tex]\[ 0 = m \cdot 4 + c \][/tex]
- Solve for [tex]\( c \)[/tex]:
[tex]\[ c = -4m \][/tex]
3. Write the Equation of the New Line:
- Now that we have both the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( c = -4m \)[/tex], we can write the equation of the new parallel line:
[tex]\[ y = mx - 4m \][/tex]
Therefore, the equation of the line parallel to the given line with an x-intercept of 4 is:
[tex]\[ y = mx - 4m \][/tex]
Thus, filling in the blanks:
[tex]\[ y = \boxed{m} x + \boxed{-4m} \][/tex]
1. Identify the Slope ([tex]\( m \)[/tex]) of the Given Line:
- Let the equation of the given line be in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
- Since we need a parallel line, the slope ([tex]\( m \)[/tex]) of our new line must be the same as the given line.
2. Find the X-Intercept and Determine the Y-Intercept ([tex]\( c \)[/tex]) of the New Line:
- By definition, the x-intercept is the point where the line crosses the x-axis ([tex]\( y = 0 \)[/tex]), so for the x-intercept of 4, the point is [tex]\( (4, 0) \)[/tex].
- Substitute [tex]\( x = 4 \)[/tex] and [tex]\( y = 0 \)[/tex] into the line equation [tex]\( y = mx + c \)[/tex]:
[tex]\[ 0 = m \cdot 4 + c \][/tex]
- Solve for [tex]\( c \)[/tex]:
[tex]\[ c = -4m \][/tex]
3. Write the Equation of the New Line:
- Now that we have both the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( c = -4m \)[/tex], we can write the equation of the new parallel line:
[tex]\[ y = mx - 4m \][/tex]
Therefore, the equation of the line parallel to the given line with an x-intercept of 4 is:
[tex]\[ y = mx - 4m \][/tex]
Thus, filling in the blanks:
[tex]\[ y = \boxed{m} x + \boxed{-4m} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.