At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! The combined gas law is a relation between the pressure, volume, and temperature of a fixed amount of gas. It combines Charles's Law, Boyle's Law, and Gay-Lussac's Law.
The combined gas law is mathematically represented by:
[tex]\[ \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure
- [tex]\( V_1 \)[/tex] is the initial volume
- [tex]\( T_1 \)[/tex] is the initial temperature (in Kelvin)
- [tex]\( P_2 \)[/tex] is the final pressure
- [tex]\( V_2 \)[/tex] is the final volume
- [tex]\( T_2 \)[/tex] is the final temperature (in Kelvin)
Now, let's evaluate the given options to check which one correctly matches this formula:
1. [tex]\( \frac{P_1 V_1}{V_1 V_2} \)[/tex]
- This expression is not in the format of the combined gas law.
2. [tex]\( \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \)[/tex]
- This expression matches exactly with the combined gas law.
3. [tex]\( P_1 V_1 - P_2 V_2 \)[/tex]
- This expression represents a difference between product terms, which is not correct.
Therefore, among the given options, the correct representation of the combined gas law is:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
which is the second option in your list. Since the question specifically asked to identify which equation represents the combined gas law and by the process of elimination, we conclude that the correct option is indeed:
[tex]\[ \boxed{2} \][/tex]
The combined gas law is mathematically represented by:
[tex]\[ \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure
- [tex]\( V_1 \)[/tex] is the initial volume
- [tex]\( T_1 \)[/tex] is the initial temperature (in Kelvin)
- [tex]\( P_2 \)[/tex] is the final pressure
- [tex]\( V_2 \)[/tex] is the final volume
- [tex]\( T_2 \)[/tex] is the final temperature (in Kelvin)
Now, let's evaluate the given options to check which one correctly matches this formula:
1. [tex]\( \frac{P_1 V_1}{V_1 V_2} \)[/tex]
- This expression is not in the format of the combined gas law.
2. [tex]\( \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \)[/tex]
- This expression matches exactly with the combined gas law.
3. [tex]\( P_1 V_1 - P_2 V_2 \)[/tex]
- This expression represents a difference between product terms, which is not correct.
Therefore, among the given options, the correct representation of the combined gas law is:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
which is the second option in your list. Since the question specifically asked to identify which equation represents the combined gas law and by the process of elimination, we conclude that the correct option is indeed:
[tex]\[ \boxed{2} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.