Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! The combined gas law is a relation between the pressure, volume, and temperature of a fixed amount of gas. It combines Charles's Law, Boyle's Law, and Gay-Lussac's Law.
The combined gas law is mathematically represented by:
[tex]\[ \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure
- [tex]\( V_1 \)[/tex] is the initial volume
- [tex]\( T_1 \)[/tex] is the initial temperature (in Kelvin)
- [tex]\( P_2 \)[/tex] is the final pressure
- [tex]\( V_2 \)[/tex] is the final volume
- [tex]\( T_2 \)[/tex] is the final temperature (in Kelvin)
Now, let's evaluate the given options to check which one correctly matches this formula:
1. [tex]\( \frac{P_1 V_1}{V_1 V_2} \)[/tex]
- This expression is not in the format of the combined gas law.
2. [tex]\( \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \)[/tex]
- This expression matches exactly with the combined gas law.
3. [tex]\( P_1 V_1 - P_2 V_2 \)[/tex]
- This expression represents a difference between product terms, which is not correct.
Therefore, among the given options, the correct representation of the combined gas law is:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
which is the second option in your list. Since the question specifically asked to identify which equation represents the combined gas law and by the process of elimination, we conclude that the correct option is indeed:
[tex]\[ \boxed{2} \][/tex]
The combined gas law is mathematically represented by:
[tex]\[ \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure
- [tex]\( V_1 \)[/tex] is the initial volume
- [tex]\( T_1 \)[/tex] is the initial temperature (in Kelvin)
- [tex]\( P_2 \)[/tex] is the final pressure
- [tex]\( V_2 \)[/tex] is the final volume
- [tex]\( T_2 \)[/tex] is the final temperature (in Kelvin)
Now, let's evaluate the given options to check which one correctly matches this formula:
1. [tex]\( \frac{P_1 V_1}{V_1 V_2} \)[/tex]
- This expression is not in the format of the combined gas law.
2. [tex]\( \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \)[/tex]
- This expression matches exactly with the combined gas law.
3. [tex]\( P_1 V_1 - P_2 V_2 \)[/tex]
- This expression represents a difference between product terms, which is not correct.
Therefore, among the given options, the correct representation of the combined gas law is:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
which is the second option in your list. Since the question specifically asked to identify which equation represents the combined gas law and by the process of elimination, we conclude that the correct option is indeed:
[tex]\[ \boxed{2} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.