At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Given that [tex]\(\sin \theta = \frac{\sqrt{75}}{10}\)[/tex] and [tex]\(\cot \theta\)[/tex] is negative, determine [tex]\(\theta\)[/tex] and [tex]\(\cot \theta\)[/tex].

Enter the angle [tex]\(\theta\)[/tex] in degrees from the interval [tex]\([0^{\circ}, 360^{\circ})\)[/tex].

Write the exact answer. Do not round.

Sagot :

To solve the problem where [tex]\(\sin \theta = \frac{\sqrt{75}}{10}\)[/tex] and [tex]\(\cot \theta\)[/tex] is negative, follow these steps:

1. Find [tex]\(\theta\)[/tex] using the given [tex]\(\sin \theta\)[/tex]:
Given [tex]\(\sin \theta = \frac{\sqrt{75}}{10}\)[/tex]. This simplifies to [tex]\(\sin \theta = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2}\)[/tex].

2. Determine the reference angle:
The reference angle [tex]\(\theta_{\text{ref}}\)[/tex] which we will denote as [tex]\(\theta_{\text{ref}} = \arcsin \left( \frac{\sqrt{3}}{2} \right)\)[/tex]. The angle in degrees for which [tex]\(\sin\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex] is [tex]\(60^\circ\)[/tex].

3. Determine the quadrants where [tex]\(\cot \theta\)[/tex] is negative:
Since [tex]\(\cot \theta\)[/tex] (which is [tex]\(\frac{\cos \theta}{\sin \theta}\)[/tex]) is negative, [tex]\(\theta\)[/tex] must be in either the second or fourth quadrants because:
- In the first quadrant, both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive so [tex]\(\cot \theta\)[/tex] would be positive.
- In the second quadrant, [tex]\(\sin \theta\)[/tex] is positive and [tex]\(\cos \theta\)[/tex] is negative resulting in a negative [tex]\(\cot \theta\)[/tex].
- In the third quadrant, [tex]\(\sin \theta\)[/tex] is negative and [tex]\(\cos \theta\)[/tex] is negative resulting in a positive [tex]\(\cot \theta\)[/tex].
- In the fourth quadrant, [tex]\(\sin \theta\)[/tex] is negative and [tex]\(\cos \theta\)[/tex] is positive resulting in a negative [tex]\(\cot \theta\)[/tex].

4. Adjust the reference angle to the correct quadrants:
- For the second quadrant: [tex]\(\theta = 180^\circ - \theta_{\text{ref}}\)[/tex]
[tex]\[ \theta = 180^\circ - 60^\circ = 120^\circ \][/tex]
- For the fourth quadrant: [tex]\(\theta = 360^\circ - \theta_{\text{ref}}\)[/tex]
[tex]\[ \theta = 360^\circ - 60^\circ = 300^\circ \][/tex]

5. Choose the angle where [tex]\(\cot \theta\)[/tex] is negative:
We analyze the values:
- For [tex]\(\theta = 120^\circ\)[/tex]:
[tex]\[ \cot(120^\circ) = \frac{\cos(120^\circ)}{\sin(120^\circ)} = \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \approx -0.5774 \][/tex]

- For [tex]\(\theta = 300^\circ\)[/tex]:
[tex]\[ \cot(300^\circ) = \frac{\cos(300^\circ)}{\sin(300^\circ)} = \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \approx -0.5774 \][/tex]

Both values give us a negative [tex]\(\cot \theta\)[/tex], but since the angle [tex]\(\theta\)[/tex] should be primary (one within the stated interval that usually appears first in trigonometric calculations for an angle), we select:
[tex]\(\theta = 120^\circ\)[/tex].

Thus, the exact answers are:
[tex]\[ \theta = 120^\circ \quad \text{and} \quad \cot \theta = -\frac{\sqrt{3}}{3} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.