Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the problem where [tex]\(\sin \theta = \frac{\sqrt{75}}{10}\)[/tex] and [tex]\(\cot \theta\)[/tex] is negative, follow these steps:
1. Find [tex]\(\theta\)[/tex] using the given [tex]\(\sin \theta\)[/tex]:
Given [tex]\(\sin \theta = \frac{\sqrt{75}}{10}\)[/tex]. This simplifies to [tex]\(\sin \theta = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2}\)[/tex].
2. Determine the reference angle:
The reference angle [tex]\(\theta_{\text{ref}}\)[/tex] which we will denote as [tex]\(\theta_{\text{ref}} = \arcsin \left( \frac{\sqrt{3}}{2} \right)\)[/tex]. The angle in degrees for which [tex]\(\sin\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex] is [tex]\(60^\circ\)[/tex].
3. Determine the quadrants where [tex]\(\cot \theta\)[/tex] is negative:
Since [tex]\(\cot \theta\)[/tex] (which is [tex]\(\frac{\cos \theta}{\sin \theta}\)[/tex]) is negative, [tex]\(\theta\)[/tex] must be in either the second or fourth quadrants because:
- In the first quadrant, both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive so [tex]\(\cot \theta\)[/tex] would be positive.
- In the second quadrant, [tex]\(\sin \theta\)[/tex] is positive and [tex]\(\cos \theta\)[/tex] is negative resulting in a negative [tex]\(\cot \theta\)[/tex].
- In the third quadrant, [tex]\(\sin \theta\)[/tex] is negative and [tex]\(\cos \theta\)[/tex] is negative resulting in a positive [tex]\(\cot \theta\)[/tex].
- In the fourth quadrant, [tex]\(\sin \theta\)[/tex] is negative and [tex]\(\cos \theta\)[/tex] is positive resulting in a negative [tex]\(\cot \theta\)[/tex].
4. Adjust the reference angle to the correct quadrants:
- For the second quadrant: [tex]\(\theta = 180^\circ - \theta_{\text{ref}}\)[/tex]
[tex]\[ \theta = 180^\circ - 60^\circ = 120^\circ \][/tex]
- For the fourth quadrant: [tex]\(\theta = 360^\circ - \theta_{\text{ref}}\)[/tex]
[tex]\[ \theta = 360^\circ - 60^\circ = 300^\circ \][/tex]
5. Choose the angle where [tex]\(\cot \theta\)[/tex] is negative:
We analyze the values:
- For [tex]\(\theta = 120^\circ\)[/tex]:
[tex]\[ \cot(120^\circ) = \frac{\cos(120^\circ)}{\sin(120^\circ)} = \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \approx -0.5774 \][/tex]
- For [tex]\(\theta = 300^\circ\)[/tex]:
[tex]\[ \cot(300^\circ) = \frac{\cos(300^\circ)}{\sin(300^\circ)} = \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \approx -0.5774 \][/tex]
Both values give us a negative [tex]\(\cot \theta\)[/tex], but since the angle [tex]\(\theta\)[/tex] should be primary (one within the stated interval that usually appears first in trigonometric calculations for an angle), we select:
[tex]\(\theta = 120^\circ\)[/tex].
Thus, the exact answers are:
[tex]\[ \theta = 120^\circ \quad \text{and} \quad \cot \theta = -\frac{\sqrt{3}}{3} \][/tex]
1. Find [tex]\(\theta\)[/tex] using the given [tex]\(\sin \theta\)[/tex]:
Given [tex]\(\sin \theta = \frac{\sqrt{75}}{10}\)[/tex]. This simplifies to [tex]\(\sin \theta = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2}\)[/tex].
2. Determine the reference angle:
The reference angle [tex]\(\theta_{\text{ref}}\)[/tex] which we will denote as [tex]\(\theta_{\text{ref}} = \arcsin \left( \frac{\sqrt{3}}{2} \right)\)[/tex]. The angle in degrees for which [tex]\(\sin\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex] is [tex]\(60^\circ\)[/tex].
3. Determine the quadrants where [tex]\(\cot \theta\)[/tex] is negative:
Since [tex]\(\cot \theta\)[/tex] (which is [tex]\(\frac{\cos \theta}{\sin \theta}\)[/tex]) is negative, [tex]\(\theta\)[/tex] must be in either the second or fourth quadrants because:
- In the first quadrant, both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive so [tex]\(\cot \theta\)[/tex] would be positive.
- In the second quadrant, [tex]\(\sin \theta\)[/tex] is positive and [tex]\(\cos \theta\)[/tex] is negative resulting in a negative [tex]\(\cot \theta\)[/tex].
- In the third quadrant, [tex]\(\sin \theta\)[/tex] is negative and [tex]\(\cos \theta\)[/tex] is negative resulting in a positive [tex]\(\cot \theta\)[/tex].
- In the fourth quadrant, [tex]\(\sin \theta\)[/tex] is negative and [tex]\(\cos \theta\)[/tex] is positive resulting in a negative [tex]\(\cot \theta\)[/tex].
4. Adjust the reference angle to the correct quadrants:
- For the second quadrant: [tex]\(\theta = 180^\circ - \theta_{\text{ref}}\)[/tex]
[tex]\[ \theta = 180^\circ - 60^\circ = 120^\circ \][/tex]
- For the fourth quadrant: [tex]\(\theta = 360^\circ - \theta_{\text{ref}}\)[/tex]
[tex]\[ \theta = 360^\circ - 60^\circ = 300^\circ \][/tex]
5. Choose the angle where [tex]\(\cot \theta\)[/tex] is negative:
We analyze the values:
- For [tex]\(\theta = 120^\circ\)[/tex]:
[tex]\[ \cot(120^\circ) = \frac{\cos(120^\circ)}{\sin(120^\circ)} = \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \approx -0.5774 \][/tex]
- For [tex]\(\theta = 300^\circ\)[/tex]:
[tex]\[ \cot(300^\circ) = \frac{\cos(300^\circ)}{\sin(300^\circ)} = \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \approx -0.5774 \][/tex]
Both values give us a negative [tex]\(\cot \theta\)[/tex], but since the angle [tex]\(\theta\)[/tex] should be primary (one within the stated interval that usually appears first in trigonometric calculations for an angle), we select:
[tex]\(\theta = 120^\circ\)[/tex].
Thus, the exact answers are:
[tex]\[ \theta = 120^\circ \quad \text{and} \quad \cot \theta = -\frac{\sqrt{3}}{3} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.