Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the inverse of the matrix [tex]\( A \)[/tex], we need to follow a few key steps. The matrix [tex]\( A \)[/tex] is given as:
[tex]\[ A = \begin{pmatrix} 6 & 1 \\ 11 & 2 \end{pmatrix} \][/tex]
First, we calculate the determinant of [tex]\( A \)[/tex]. For a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the determinant is given by:
[tex]\[ \text{det}(A) = ad - bc \][/tex]
Plugging in the values from matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (6 \times 2) - (1 \times 11) = 12 - 11 = 1 \][/tex]
Since the determinant is 1, which is non-zero, the matrix [tex]\( A \)[/tex] is invertible.
Next, for a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse [tex]\( A^{-1} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this to matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\( A \)[/tex] should be:
[tex]\[ A^{-1} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
However, the numerical values may contain minor discrepancies due to floating-point arithmetic precision inherent in calculations. Specifically, the result we found is:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
Thus, the inverse of the matrix [tex]\( A \)[/tex] is precisely:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
[tex]\[ A = \begin{pmatrix} 6 & 1 \\ 11 & 2 \end{pmatrix} \][/tex]
First, we calculate the determinant of [tex]\( A \)[/tex]. For a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the determinant is given by:
[tex]\[ \text{det}(A) = ad - bc \][/tex]
Plugging in the values from matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (6 \times 2) - (1 \times 11) = 12 - 11 = 1 \][/tex]
Since the determinant is 1, which is non-zero, the matrix [tex]\( A \)[/tex] is invertible.
Next, for a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse [tex]\( A^{-1} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this to matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\( A \)[/tex] should be:
[tex]\[ A^{-1} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
However, the numerical values may contain minor discrepancies due to floating-point arithmetic precision inherent in calculations. Specifically, the result we found is:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
Thus, the inverse of the matrix [tex]\( A \)[/tex] is precisely:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.