Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the inverse of the matrix [tex]\( A \)[/tex], we need to follow a few key steps. The matrix [tex]\( A \)[/tex] is given as:
[tex]\[ A = \begin{pmatrix} 6 & 1 \\ 11 & 2 \end{pmatrix} \][/tex]
First, we calculate the determinant of [tex]\( A \)[/tex]. For a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the determinant is given by:
[tex]\[ \text{det}(A) = ad - bc \][/tex]
Plugging in the values from matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (6 \times 2) - (1 \times 11) = 12 - 11 = 1 \][/tex]
Since the determinant is 1, which is non-zero, the matrix [tex]\( A \)[/tex] is invertible.
Next, for a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse [tex]\( A^{-1} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this to matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\( A \)[/tex] should be:
[tex]\[ A^{-1} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
However, the numerical values may contain minor discrepancies due to floating-point arithmetic precision inherent in calculations. Specifically, the result we found is:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
Thus, the inverse of the matrix [tex]\( A \)[/tex] is precisely:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
[tex]\[ A = \begin{pmatrix} 6 & 1 \\ 11 & 2 \end{pmatrix} \][/tex]
First, we calculate the determinant of [tex]\( A \)[/tex]. For a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the determinant is given by:
[tex]\[ \text{det}(A) = ad - bc \][/tex]
Plugging in the values from matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (6 \times 2) - (1 \times 11) = 12 - 11 = 1 \][/tex]
Since the determinant is 1, which is non-zero, the matrix [tex]\( A \)[/tex] is invertible.
Next, for a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse [tex]\( A^{-1} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
Applying this to matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\( A \)[/tex] should be:
[tex]\[ A^{-1} = \begin{pmatrix} 2 & -1 \\ -11 & 6 \end{pmatrix} \][/tex]
However, the numerical values may contain minor discrepancies due to floating-point arithmetic precision inherent in calculations. Specifically, the result we found is:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
Thus, the inverse of the matrix [tex]\( A \)[/tex] is precisely:
[tex]\[ A^{-1} = \begin{pmatrix} 2.0000000000000018 & -1.0000000000000009 \\ -11.00000000000001 & 6.000000000000005 \end{pmatrix} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.