Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let’s solve the equation [tex]\( 3^{x+2} = 15 \)[/tex] for [tex]\( x \)[/tex] using the change of base formula for logarithms.
1. Understand the equation:
We have [tex]\( 3^{x+2} = 15 \)[/tex]. Our goal is to isolate [tex]\( x \)[/tex].
2. Take the logarithm of both sides:
To simplify, we can take the natural logarithm (or any logarithm base) of both sides of the equation:
[tex]\[ \log(3^{x+2}) = \log(15) \][/tex]
3. Apply the power rule of logarithms:
The logarithm power rule states that [tex]\( \log(a^b) = b \log(a) \)[/tex]. Applying this to the left side:
[tex]\[ (x+2) \log(3) = \log(15) \][/tex]
4. Solve for [tex]\( x + 2 \)[/tex]:
To isolate [tex]\( x + 2 \)[/tex], divide both sides by [tex]\( \log(3) \)[/tex]:
[tex]\[ x+2 = \frac{\log(15)}{\log(3)} \][/tex]
5. Calculate the value:
Using the change of base formula [tex]\( \log_b(y) = \frac{\log(y)}{\log(b)} \)[/tex]:
[tex]\[ x+2 = \frac{\log(15)}{\log(3)} \][/tex]
The calculation of [tex]\( \frac{\log(15)}{\log(3)} \)[/tex] results in approximately [tex]\( 2.464973520717927 \)[/tex].
6. Isolate [tex]\( x \)[/tex]:
Now, subtract 2 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(15)}{\log(3)} - 2 \][/tex]
Which yields:
[tex]\[ x \approx 2.464973520717927 - 2 \approx 0.4649735207179271 \][/tex]
So, the solution to the equation [tex]\( 3^{x+2} = 15 \)[/tex] for [tex]\( x \)[/tex] is approximately [tex]\( 0.465 \)[/tex].
Therefore, the closest answer choice is:
[tex]\[ \boxed{0.465} \][/tex]
1. Understand the equation:
We have [tex]\( 3^{x+2} = 15 \)[/tex]. Our goal is to isolate [tex]\( x \)[/tex].
2. Take the logarithm of both sides:
To simplify, we can take the natural logarithm (or any logarithm base) of both sides of the equation:
[tex]\[ \log(3^{x+2}) = \log(15) \][/tex]
3. Apply the power rule of logarithms:
The logarithm power rule states that [tex]\( \log(a^b) = b \log(a) \)[/tex]. Applying this to the left side:
[tex]\[ (x+2) \log(3) = \log(15) \][/tex]
4. Solve for [tex]\( x + 2 \)[/tex]:
To isolate [tex]\( x + 2 \)[/tex], divide both sides by [tex]\( \log(3) \)[/tex]:
[tex]\[ x+2 = \frac{\log(15)}{\log(3)} \][/tex]
5. Calculate the value:
Using the change of base formula [tex]\( \log_b(y) = \frac{\log(y)}{\log(b)} \)[/tex]:
[tex]\[ x+2 = \frac{\log(15)}{\log(3)} \][/tex]
The calculation of [tex]\( \frac{\log(15)}{\log(3)} \)[/tex] results in approximately [tex]\( 2.464973520717927 \)[/tex].
6. Isolate [tex]\( x \)[/tex]:
Now, subtract 2 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(15)}{\log(3)} - 2 \][/tex]
Which yields:
[tex]\[ x \approx 2.464973520717927 - 2 \approx 0.4649735207179271 \][/tex]
So, the solution to the equation [tex]\( 3^{x+2} = 15 \)[/tex] for [tex]\( x \)[/tex] is approximately [tex]\( 0.465 \)[/tex].
Therefore, the closest answer choice is:
[tex]\[ \boxed{0.465} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.