Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let’s solve the equation [tex]\( 3^{x+2} = 15 \)[/tex] for [tex]\( x \)[/tex] using the change of base formula for logarithms.
1. Understand the equation:
We have [tex]\( 3^{x+2} = 15 \)[/tex]. Our goal is to isolate [tex]\( x \)[/tex].
2. Take the logarithm of both sides:
To simplify, we can take the natural logarithm (or any logarithm base) of both sides of the equation:
[tex]\[ \log(3^{x+2}) = \log(15) \][/tex]
3. Apply the power rule of logarithms:
The logarithm power rule states that [tex]\( \log(a^b) = b \log(a) \)[/tex]. Applying this to the left side:
[tex]\[ (x+2) \log(3) = \log(15) \][/tex]
4. Solve for [tex]\( x + 2 \)[/tex]:
To isolate [tex]\( x + 2 \)[/tex], divide both sides by [tex]\( \log(3) \)[/tex]:
[tex]\[ x+2 = \frac{\log(15)}{\log(3)} \][/tex]
5. Calculate the value:
Using the change of base formula [tex]\( \log_b(y) = \frac{\log(y)}{\log(b)} \)[/tex]:
[tex]\[ x+2 = \frac{\log(15)}{\log(3)} \][/tex]
The calculation of [tex]\( \frac{\log(15)}{\log(3)} \)[/tex] results in approximately [tex]\( 2.464973520717927 \)[/tex].
6. Isolate [tex]\( x \)[/tex]:
Now, subtract 2 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(15)}{\log(3)} - 2 \][/tex]
Which yields:
[tex]\[ x \approx 2.464973520717927 - 2 \approx 0.4649735207179271 \][/tex]
So, the solution to the equation [tex]\( 3^{x+2} = 15 \)[/tex] for [tex]\( x \)[/tex] is approximately [tex]\( 0.465 \)[/tex].
Therefore, the closest answer choice is:
[tex]\[ \boxed{0.465} \][/tex]
1. Understand the equation:
We have [tex]\( 3^{x+2} = 15 \)[/tex]. Our goal is to isolate [tex]\( x \)[/tex].
2. Take the logarithm of both sides:
To simplify, we can take the natural logarithm (or any logarithm base) of both sides of the equation:
[tex]\[ \log(3^{x+2}) = \log(15) \][/tex]
3. Apply the power rule of logarithms:
The logarithm power rule states that [tex]\( \log(a^b) = b \log(a) \)[/tex]. Applying this to the left side:
[tex]\[ (x+2) \log(3) = \log(15) \][/tex]
4. Solve for [tex]\( x + 2 \)[/tex]:
To isolate [tex]\( x + 2 \)[/tex], divide both sides by [tex]\( \log(3) \)[/tex]:
[tex]\[ x+2 = \frac{\log(15)}{\log(3)} \][/tex]
5. Calculate the value:
Using the change of base formula [tex]\( \log_b(y) = \frac{\log(y)}{\log(b)} \)[/tex]:
[tex]\[ x+2 = \frac{\log(15)}{\log(3)} \][/tex]
The calculation of [tex]\( \frac{\log(15)}{\log(3)} \)[/tex] results in approximately [tex]\( 2.464973520717927 \)[/tex].
6. Isolate [tex]\( x \)[/tex]:
Now, subtract 2 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(15)}{\log(3)} - 2 \][/tex]
Which yields:
[tex]\[ x \approx 2.464973520717927 - 2 \approx 0.4649735207179271 \][/tex]
So, the solution to the equation [tex]\( 3^{x+2} = 15 \)[/tex] for [tex]\( x \)[/tex] is approximately [tex]\( 0.465 \)[/tex].
Therefore, the closest answer choice is:
[tex]\[ \boxed{0.465} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.