Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve this step-by-step using the continuous compound interest formula:
The continuous compound interest formula is given by:
[tex]\[ A = P e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the amount of money accumulated after n years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (in decimal form).
- [tex]\( t \)[/tex] is the time the money is invested for in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm, approximately equal to 2.71828.
Given values:
- [tex]\( P = 740 \)[/tex] dollars
- [tex]\( r = 0.11 \)[/tex] (since 11% = 0.11)
- [tex]\( t = 7 \)[/tex] years
Let's calculate:
1. Identify the values:
- Principal (P) = [tex]$740$[/tex]
- Annual interest rate (r) = [tex]$0.11$[/tex]
- Time (t) = [tex]$7$[/tex] years
2. Substitute the values into the formula:
[tex]\[ A = 740 \times e^{0.11 \times 7} \][/tex]
3. Calculate the exponent part:
[tex]\[ 0.11 \times 7 = 0.77 \][/tex]
4. Using the value of e (approximately 2.71828), calculate:
[tex]\[ e^{0.77} \approx 2.157 \][/tex]
5. Now multiply the principal amount by this value:
[tex]\[ A = 740 \times 2.157 \][/tex]
[tex]\[ A \approx 1598.23 \][/tex]
So, after 7 years, the investment will be worth approximately \[tex]$1598.23. Thus, the correct choice based on the given options would be the value closest to $[/tex]\[tex]$ 1598$[/tex], which matches [tex]$\$[/tex] 1,598$.
The continuous compound interest formula is given by:
[tex]\[ A = P e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the amount of money accumulated after n years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (in decimal form).
- [tex]\( t \)[/tex] is the time the money is invested for in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm, approximately equal to 2.71828.
Given values:
- [tex]\( P = 740 \)[/tex] dollars
- [tex]\( r = 0.11 \)[/tex] (since 11% = 0.11)
- [tex]\( t = 7 \)[/tex] years
Let's calculate:
1. Identify the values:
- Principal (P) = [tex]$740$[/tex]
- Annual interest rate (r) = [tex]$0.11$[/tex]
- Time (t) = [tex]$7$[/tex] years
2. Substitute the values into the formula:
[tex]\[ A = 740 \times e^{0.11 \times 7} \][/tex]
3. Calculate the exponent part:
[tex]\[ 0.11 \times 7 = 0.77 \][/tex]
4. Using the value of e (approximately 2.71828), calculate:
[tex]\[ e^{0.77} \approx 2.157 \][/tex]
5. Now multiply the principal amount by this value:
[tex]\[ A = 740 \times 2.157 \][/tex]
[tex]\[ A \approx 1598.23 \][/tex]
So, after 7 years, the investment will be worth approximately \[tex]$1598.23. Thus, the correct choice based on the given options would be the value closest to $[/tex]\[tex]$ 1598$[/tex], which matches [tex]$\$[/tex] 1,598$.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.