Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the mass of the planet, we can use the formula for the gravitational force:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force (in Newtons, [tex]\( N \)[/tex]),
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the satellite,
- [tex]\( m_2 \)[/tex] is the mass of the planet,
- [tex]\( r \)[/tex] is the radius of the orbit (in meters).
In this problem:
- The gravitational pull, [tex]\( F = 620 \, N \)[/tex],
- The mass of the satellite, [tex]\( m_1 = 450 \, kg \)[/tex],
- The orbital radius, [tex]\( r = 4.0 \times 10^6 \, m \)[/tex],
- The gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, N \cdot m^2 / kg^2 \)[/tex].
We need to find the mass of the planet, [tex]\( m_2 \)[/tex].
First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ m_2 = \frac{620 \, N \cdot (4.0 \times 10^6 \, m)^2}{6.67 \times 10^{-11} \, N \cdot m^2 / kg^2 \cdot 450 \, kg} \][/tex]
Calculate the value step by step:
1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (4.0 \times 10^6 \, m)^2 = 16 \times 10^{12} \, m^2 \][/tex]
2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 620 \, N \cdot 16 \times 10^{12} \, m^2 = 9.92 \times 10^{15} \, N \cdot m^2 \][/tex]
3. Multiply [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67 \times 10^{-11} \, N \cdot m^2 / kg^2 \cdot 450 \, kg = 3.0015 \times 10^{-8} \, N \cdot m^2 / kg \][/tex]
4. Divide the result from step 2 by the result from step 3:
[tex]\[ m_2 = \frac{9.92 \times 10^{15}}{3.0015 \times 10^{-8}} \approx 3.305 \times 10^{23} \, kg \][/tex]
Thus, the approximate mass of the planet is:
[tex]\[ 3.305 \times 10^{23} \, kg \][/tex]
The answer is closest to option A:
[tex]\[ A. 3.3 \times 10^{23} \, kg \][/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force (in Newtons, [tex]\( N \)[/tex]),
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the satellite,
- [tex]\( m_2 \)[/tex] is the mass of the planet,
- [tex]\( r \)[/tex] is the radius of the orbit (in meters).
In this problem:
- The gravitational pull, [tex]\( F = 620 \, N \)[/tex],
- The mass of the satellite, [tex]\( m_1 = 450 \, kg \)[/tex],
- The orbital radius, [tex]\( r = 4.0 \times 10^6 \, m \)[/tex],
- The gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, N \cdot m^2 / kg^2 \)[/tex].
We need to find the mass of the planet, [tex]\( m_2 \)[/tex].
First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ m_2 = \frac{620 \, N \cdot (4.0 \times 10^6 \, m)^2}{6.67 \times 10^{-11} \, N \cdot m^2 / kg^2 \cdot 450 \, kg} \][/tex]
Calculate the value step by step:
1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (4.0 \times 10^6 \, m)^2 = 16 \times 10^{12} \, m^2 \][/tex]
2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 620 \, N \cdot 16 \times 10^{12} \, m^2 = 9.92 \times 10^{15} \, N \cdot m^2 \][/tex]
3. Multiply [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67 \times 10^{-11} \, N \cdot m^2 / kg^2 \cdot 450 \, kg = 3.0015 \times 10^{-8} \, N \cdot m^2 / kg \][/tex]
4. Divide the result from step 2 by the result from step 3:
[tex]\[ m_2 = \frac{9.92 \times 10^{15}}{3.0015 \times 10^{-8}} \approx 3.305 \times 10^{23} \, kg \][/tex]
Thus, the approximate mass of the planet is:
[tex]\[ 3.305 \times 10^{23} \, kg \][/tex]
The answer is closest to option A:
[tex]\[ A. 3.3 \times 10^{23} \, kg \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.