Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

A deep-space satellite is sent to orbit a distant planet with unknown mass. On arrival, the satellite begins its orbit and measures a gravitational pull from the planet of [tex]\(620 \, \text{N}\)[/tex]. If the satellite has a mass of [tex]\(450 \, \text{kg}\)[/tex] and orbits the planet at a radius of [tex]\(4.0 \times 10^6 \, \text{m}\)[/tex], what is the approximate mass of the planet? (Recall that [tex]\(G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2\)[/tex].)

A. [tex]\(3.3 \times 10^{23} \, \text{kg}\)[/tex]
B. [tex]\(2.9 \times 10^{22} \, \text{kg}\)[/tex]
C. [tex]\(7.8 \times 10^{23} \, \text{kg}\)[/tex]
D. [tex]\(4.5 \times 10^{24} \, \text{kg}\)[/tex]


Sagot :

To determine the mass of the planet, we can use the formula for the gravitational force:

[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the gravitational force (in Newtons, [tex]\( N \)[/tex]),
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the satellite,
- [tex]\( m_2 \)[/tex] is the mass of the planet,
- [tex]\( r \)[/tex] is the radius of the orbit (in meters).

In this problem:
- The gravitational pull, [tex]\( F = 620 \, N \)[/tex],
- The mass of the satellite, [tex]\( m_1 = 450 \, kg \)[/tex],
- The orbital radius, [tex]\( r = 4.0 \times 10^6 \, m \)[/tex],
- The gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, N \cdot m^2 / kg^2 \)[/tex].

We need to find the mass of the planet, [tex]\( m_2 \)[/tex].

First, rearrange the formula to solve for [tex]\( m_2 \)[/tex]:

[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]

Substitute the known values into the equation:

[tex]\[ m_2 = \frac{620 \, N \cdot (4.0 \times 10^6 \, m)^2}{6.67 \times 10^{-11} \, N \cdot m^2 / kg^2 \cdot 450 \, kg} \][/tex]

Calculate the value step by step:

1. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ (4.0 \times 10^6 \, m)^2 = 16 \times 10^{12} \, m^2 \][/tex]

2. Multiply [tex]\( F \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 620 \, N \cdot 16 \times 10^{12} \, m^2 = 9.92 \times 10^{15} \, N \cdot m^2 \][/tex]

3. Multiply [tex]\( G \cdot m_1 \)[/tex]:
[tex]\[ 6.67 \times 10^{-11} \, N \cdot m^2 / kg^2 \cdot 450 \, kg = 3.0015 \times 10^{-8} \, N \cdot m^2 / kg \][/tex]

4. Divide the result from step 2 by the result from step 3:
[tex]\[ m_2 = \frac{9.92 \times 10^{15}}{3.0015 \times 10^{-8}} \approx 3.305 \times 10^{23} \, kg \][/tex]

Thus, the approximate mass of the planet is:

[tex]\[ 3.305 \times 10^{23} \, kg \][/tex]

The answer is closest to option A:

[tex]\[ A. 3.3 \times 10^{23} \, kg \][/tex]